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The many faces of reliability of visual perception for autonomous driving

Performance monitoring
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Learning to identify complex 
situations
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Challenges of driving automation

How to identify/prevent incorrect predictions that can cause system failures?

unknown 
scenario

wrong prediction
(with confidence)

wrong behavior

Input data Perception model Driving stack
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Challenges of driving automation

Performance can fluctuate depending on conditions and traditional engineered monitoring 
solutions cannot deal alone with the complexity of the world.

---
Q. M. Rahman et al., Online Monitoring of Object Detection Performance During Deployment, arXiv 2020
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Neural monitoring - Observer Networks

● Target Network: (pre-trained) neural network for a task of interest
● Observer Network (ObsNet): auxiliary network connected to Target Network

○ Can have access to internal activations and predictions of Target
○ Trained to predict failures of Target Network
○ Produces confidence/failure/anomaly score

---
C. Corbieret al., Addressing Failure Prediction by Learning Model Confidence, NeurIPS 2019
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Neural monitoring - Observer Networks

● Benefits: 
○ Generic, flexible, fast, memory-efficient

● Drawbacks: 
○ Needs a dedicated train set (Target Network makes few errors)
○ May not generalize to OOD data, not available at train time

---
C. Corbieret al., Addressing Failure Prediction by Learning Model Confidence, NeurIPS 2019
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A major challenge with Observer Networks is related to the 
availability of hard training data.
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Monitoring object detection performance

Earlier approaches leveraged temporal information to compile per sequence statistics and 
predict mAP

---
Q. M. Rahman et al., Online Monitoring of Object Detection Performance During Deployment, arXiv 2020
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What if we make the Target fail and learn from that?

https://docs.google.com/file/d/1uFUDS6SkBDKxAq1k1xoFkXkWYUGCOfLg/preview
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Adversarial Attacks

● Neural Networks can be fooled by perturbing the input image with constructed noise
● We use Adversarial Attacks in order to trigger failures of the target network  

---
C. Szegedy al., Intriguing properties of neural networks, arXiv 2013
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Local Adversarial Attacks

● Use Local Adversarial Attacks (LAA) to “hallucinate” new class
● Edit a part of the image to decrease the target prediction in this location
● Encapsulate attack in random shape as proxy for unknown objects

---
V. Besnier al., Triggering Failures: Out-Of-Distribution detection by learning from local adversarial attacks in Semantic Segmentation, ICCV 2021

Training image Augmented training imageLocal adversarial
attack

Intended 
behavior

Unintended 
behavior
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ObsNet - training setup

● The Observer learns failure behavior patterns of Target under attacks

---
V. Besnier al., Triggering Failures: Out-Of-Distribution detection by learning from local adversarial attacks in Semantic Segmentation, ICCV 2021
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ObsNet - at runtime

● Generate classification predictions from Target and uncertainty from Observer

---
V. Besnier al., Triggering Failures: Out-Of-Distribution detection by learning from local adversarial attacks in Semantic Segmentation, ICCV 2021
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ObsNet Results

StreetHazardsBDD Anomaly (OOD: train, motorcycle)
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Impact of attack shape

---
V. Besnier al., Triggering Failures: Out-Of-Distribution detection by learning from local adversarial attacks in Semantic Segmentation, ICCV 2021

No attacks All pixels Square Class pixels Random shape

Adversarial
attacks

Image

Segmentation

FPR95TPR / 51.9 45.5 46.8 44.6
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ObsNet Quantitative Results

StreetHazardsBDD Anomaly (OOD: train, motorcycle)

Input image Segmentation ObsNet Softmax MCDropout

CamVid OOD

BDD Anomaly
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● Leverage adversarial attacks to find blind spots 
in the Target Network

● Focus on localized regions to mimic unknown 
objects

● Can generate infinite negative examples

● Idea can be applied for regression, e.g., SLURP

● Cannot localize precisely the anomalous object

● The predicted error is generic, not easy to 
match a specific type of uncertainty

ObsNet

Precision vs test-time 
computational cost

---
V. Besnier al., Triggering Failures: Out-Of-Distribution detection by learning from local adversarial attacks in Semantic Segmentation, ICCV 2021
X. Yu et al., SLURP: Side Learning Uncertainty for Regression Problems, BMVC 2021

Takeaways



Mar. 2022   | 18

The end.


