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Background 
Neural Networks are mostly highly accurate and confident …

DNN Classifier

Cat Dog
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Background 
… and very confident even when wrong (miscalibration)

DNN Classifier

Cat Dog
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Background 
… and very confident on Out-of-distribution data (unaware of unknowns)

DNN Classifier

Cat Dog

(ideally, we would like them to be uncertain on these samples)
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Background 
… and often wrong under covariate shift

DNN Classifier

Cat Dog
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Background 
Why these problems?
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Background 
Why these problems?

• Why confident even when wrong?

• Why not uncertain on OOD data?

• Why can’t they handle covariate shift?

• Overparameterization and high capacity?

• Poor regularisation?

• Spurious features?

• Models not expressive enough?

• Less data?
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Background 
Why these problems?

• Why confident even when wrong?

• Why not uncertain on OOD data?

• Why can’t they handle covariate shift?

• Overparameterization and high capacity?

• Poor regularisation?

• Spurious features?

• Models not expressive enough?

• Less data?

Perhaps because we didn’t ask them to be robust? 

(Our design choices are mainly focused towards minimizing generalisation gap on a relatively 
small dataset under controlled environment on metrics focused towards accuracy — far from the 
real-world situations we would like answers for)
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Set-up
First definition (Probability Calibration — The real one)
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Set-up
First definition (Probability Calibration — The real one)
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Set-up
First definition (Probability Calibration — The real one)

10

Second definition (Confidence Calibration — Mostly used in DNNs)



Set-up
First definition (Probability Calibration — The real one)
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Second definition (Confidence Calibration — Mostly used in DNNs)



Set-up
Examples

• Case 1:

• Confidence Calibrated 
• Probability Calibrated
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Set-up
Examples

• Case 1:

• Confidence Calibrated 
• Probability Calibrated

• Case 2: • Confidence Calibrated 
• Probability Uncalibrated
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Set-up
Examples

• Case 1:

• Confidence Calibrated 
• Probability Calibrated

• Case 2: • Confidence Calibrated 
• Probability Uncalibrated

• Probability Calibrated only for \eps_+ = 0.2  
• Confidence Calibrated throughout 
• 70% Accurate throughout 
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Quantifying Miscalibration
Confidence calibration — ECE, AdaECE, Reliability Histogram

• Expected mismatch between accuracy and confidence [Naeini et al., AAAI15]

• Discretize the space (binning)

• Compute the mismatch/bin
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Quantifying Miscalibration
Confidence calibration — ECE, AdaECE, Reliability Histogram

• Expected mismatch between accuracy and confidence [Naeini et al., AAAI15]

• Discretize the space (binning)

• Compute the mismatch/bin

• Other variants

• Maximum Calibration Error [Naeini et al., AAAI15]

• Class-wise ECE (stronger defn than ECE) [Kull et al., NeurIPS19]

• Adaptive ECE [Mukhoti et al., NeurIPS20]
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Calibration - Why?
• Uncalibrated models can be wrong with high confidence

• Autonomous driving

• Medical Imaging etc.

• Are NNs uncalibrated?

•  Many studies have shown that they are, but why?

• No single answer unfortunately
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Calibration — How?
Post-hoc (Temperature Scaling)

• Temperature scaling — on a val set, find a positive temperature hyper-parameters to 
ensure decrease in ECE, while not modifying their accuracies [Guo et al., ICML17]

• Works well as DNNs are overconfident but this approach effectively makes a model under-
confident as T generally is >1.
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Calibration — How?
Post-hoc (Adaptive Temperature Scaling [Joy et al., AAAI 23])

• Temperature scaling — Same T for all the 
samples


• However, different samples contribute 
differently to miscalibration
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Calibration — How?
Post-hoc (Adaptive Temperature Scaling [Joy et al., AAAI 23])

• Temperature scaling — Same T for all the 
samples


• However, different samples contribute 
differently to miscalibration

• VAE objective over feature space


• Assuming feature space contains the necessary info


• Loglikelihood to ensure the error-behaviour on the val set 
remains the same.
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Calibration — How?
During training (Focal loss, MMCE, Brier Score, Label Smoothing)
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Calibration — How?
During training (Focal loss, MMCE, Brier Score, Label Smoothing)
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Is calibration itself enough?
Reliable uncertainty estimation
• Not necessarily

• It characterises behaviour on in-distribution and perhaps on domain shift datasets

• What about out-of-distribution? 
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Is calibration itself enough?
Reliable uncertainty estimation
• Not necessarily

• It characterises behaviour on in-distribution and perhaps on domain shift datasets

• What about out-of-distribution? 

• Ideally,

• We would like models to be accurate and calibrated on in-distribution data

• And their uncertainties to increase as the input goes away from in-distribution

• Heavy domain shift

• Out of distribution
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Improving Calibration and Uncertainty Estimates
RegMixup [Pinto et al., NeurIPS22]

• Explicitly ask the model to be uncertain (under confident) outside the data-distribution
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Improving Calibration and Uncertainty Estimates

• Explicitly ask the model to be uncertain (under confident) outside the data-distribution

• How do we obtain and use OOD data efficiently? 


26

RegMixup [Pinto et al., NeurIPS22]



Improving Calibration and Uncertainty Estimates

• Explicitly ask the model to be uncertain (under confident) outside the data-distribution

• How do we obtain and use OOD data efficiently? 


• Synthesize OOD using Mixup type interpolation
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Improving Calibration and Uncertainty Estimates

• Explicitly ask the model to be uncertain (under confident) outside the data-distribution

• How do we obtain and use OOD data efficiently? 


• Synthesize OOD using Mixup type interpolation

• Final RegMixup Objective

(Note, first term is not present in standard Mixup — very simple modification 
yet highly effective)
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RegMixup [Pinto et al., NeurIPS22]



Improving Calibration and Uncertainty Estimates
RegMixup vs Mixup
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Improving Calibration and Uncertainty Estimates
RegMixup vs Mixup

• Is it doing anything interesting? 

• WideResNet28-10 trained on CIFAR10

• 1K pairs of samples randomly selected 

ensuring they belong to different classes

• For each pair, via convex combination, 20 

samples are synthesised — total 20K 
samples 

• The heat-map is then created

• Intensity of (\lambda, H) bin indicates the 

number of samples in that bin

(A relatively more regular behaviour of uncertainty w.r.t. input space for RegMixup)
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Improving Calibration and Uncertainty Estimates
RegMixup (Experiments) — In-distribution and covariate shift
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Improving Calibration and Uncertainty Estimates
RegMixup (Experiments) — Out-of-distribution (AUROC)
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Improving Calibration and Uncertainty Estimates
RegMixup (Experiments) — Calibration

Accuracy, Uncertainty estimates, and Calibration — all three aspects are improved
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Calibrating Object Detectors
Self-Aware Object Detectors [Oksuz et al., CVPR23] 
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Calibrating Object Detectors
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Self-Aware Object Detectors [Oksuz et al., CVPR23] 



Calibrating Object Detectors

• Object detection is a joint task — classification and regression
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Self-Aware Object Detectors [Oksuz et al., CVPR23] 



Calibrating Object Detectors

• Object detection is a joint task — classification and regression

• Need a measure of uncertainty


• Turns out object detectors are very good at detecting OOD images if the 
uncertainties are quantified using only top-3 predictions (1-confidence)
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• Create dataset — using COCO, nuImages, Obj365, iNaturalist, etc.

Self-Aware Object Detectors [Oksuz et al., CVPR23] 



Calibrating Object Detectors
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Self-Aware Object Detectors [Oksuz et al., CVPR23] 



Mixture of Calibrated Experts (MoCaE)

• Calibration — IoU of True-positive 
boxes with ground-truth should 
match confidence


• Given a trained model, take a val-
set, use Isotonic regression (or 
similar) to calibrate — that’s it. 
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[Oksuz et al., arXiv 23] 



Mixture of Calibrated Experts (MoCaE)
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Mixture of Calibrated Experts (MoCaE)
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[Oksuz et al., arXiv 23] 



To Summarise
• Calibration is important


• But thinking about all the failure modes together is crucial (calibration, OOD, covariate-shift) 
as one might impact another — e.g., RegMixup


• Calibration for object detectors is quite open research problem with very limited work 
produced so far


• Do we need new architectures? e.g., Transformers?


• Turns out Transformers suffer from similar vulnerabilities as CNNs [An Impartial Take …;Pinto et al., 
ECCV22] 


• LLMs — open problem but without proper penetration testing and reliability certificates, these 
models will most likely not be used in any safety-critical situations. There is a good research 
opportunity here


• Multi-modality (CLIP)? Can we continually fine-tune with reliability guarantees? Similar to  [Fine-
tuning can cripple your foundation model;…;Mukhoti et al., arXiv23] 
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Thank you for your time

43

Questions?


