

Calibration of Deep Neural Networks and Beyond...

Puneet K. Dokania (University of Oxford and Five AI Oxford)

ICCV Paris Tutorial on 3rd Oct 2023 (The Many Faces of Reliability of Deep Learning for Real-World Deployment)

Five AI Oxford Team

Nick Lord

Kemal Oksuz

Torr Vision Group (Oxford Uni)

- Prof. Philip Torr (Lead)
- PhD and Postdocs at TVG

Tom Joy

Selim Kuzucu

(Old photo)

Background Neural Networks are mostly highly accurate and confident ...

Background ... and very confident even when wrong (miscalibration)

DNN Classifier

Background ... and very confident on Out-of-distribution data (unaware of unknowns)

(ideally, we would like them to be uncertain on these samples)

Background ... and often wrong under covariate shift

Background Why these problems?

Background Why these problems?

- Why confident even when wrong?
- Why not uncertain on OOD data?
- Why can't they handle covariate shift?

- Overparameterization and high capacity?
- Poor regularisation?
- Spurious features?
- Models not expressive enough?
- Less data?

Background Why these problems?

- Why confident even when wrong?
- Why not uncertain on OOD data?
- Why can't they handle covariate shift?

Perhaps because we didn't ask them to be robust?

(Our design choices are mainly focused towards minimizing generalisation gap on a relatively small dataset under controlled environment on metrics focused towards accuracy — far from the real-world situations we would like answers for)

- Overparameterization and high capacity?
- Poor regularisation?
- Spurious features?
- Models not expressive enough?
- Less data?

Set-up

First definition (Probability Calibration — The real one)

Set-up First definition (Probability Calibration — The real one) $P_{\theta}(\mathbf{y}|\mathbf{x}) = p, \forall \mathbf{x} \in \mathcal{X}_{p}$ $\hat{P}(\mathbf{y}|\mathcal{X}_{p})$ \mathcal{X}_{p}

 \mathcal{X}_{test}

$$\hat{P}(\mathbf{y}|\mathcal{X}_p) = P_{\theta}(\mathbf{y}|\mathcal{X}_p) = p$$
$$\forall p$$

Set-up First definition (Probability Calibration — The real one) $P_{\theta}(\mathbf{y}|\mathbf{x}) = p, \forall \mathbf{x} \in \mathcal{X}_{p}$ $\hat{P}(\mathbf{y}|\mathcal{X}_{p})$ \mathcal{X}_{n}

 \mathcal{X}_{test}

Second definition (Confidence Calibration – Mostly used in DNNs)

 $\max P_{\theta}(\mathbf{y}|\mathbf{x}) = p, \forall \mathbf{x} \in \mathcal{X}_p$

$$\hat{P}(\mathbf{y}|\mathcal{X}_p) = P_{\theta}(\mathbf{y}|\mathcal{X}_p) = p$$
$$\forall p$$

Set-up First definition (Probability Calibration — The real one) $P_{\theta}(\mathbf{y}|\mathbf{x}) = p, \forall \mathbf{x} \in \mathcal{X}_{p}$ $\hat{P}(\mathbf{y}|\mathcal{X}_{p})$ \mathcal{X}_{n}

 \mathcal{X}_{test}

 \mathcal{X}_p

 \mathcal{X}_{test}

Second definition (Confidence Calibration – Mostly used in DNNs)

 $\max P_{\theta}(\mathbf{y}|\mathbf{x}) = p, \forall \mathbf{x} \in \mathcal{X}_p$

$$\underline{\bar{P}(y = \operatorname{argmax} P_{\theta}(\mathbf{y}|\mathcal{X}_p)|\mathcal{X}_p)}_{accuracy} = \underbrace{\max P_{\theta}(\mathbf{y}|\mathcal{X}_p)}_{confidence} = p, \forall p \in [0, 1]$$

accuracy

$$\hat{P}(\mathbf{y}|\mathcal{X}_p) = P_{\theta}(\mathbf{y}|\mathcal{X}_p) = p$$
$$\forall p$$

Set-up Examples

Case 1: ullet

$$P_{\theta}(\mathbf{y}|\mathbf{x}) = \begin{pmatrix} 0.7\\0.2\\0.1 \end{pmatrix}, \forall \mathbf{x} \in \mathcal{X}_{test} \implies \mathcal{X}_{test} = \mathcal{X}_{p}$$
$$\underline{\bar{P}(y = \operatorname{argmax} P_{\theta}(\mathbf{y}|\mathcal{X}_{p})|\mathcal{X}_{p})} = \underbrace{\max P_{\theta}(\mathbf{y}|\mathcal{X}_{p})}_{confidence} = 0.7$$

accuracy

$$\hat{P}(\mathbf{y}|\mathbf{x} \in \mathcal{X}_p) = \begin{pmatrix} 0.7\\0.2\\0.1 \end{pmatrix} = P_{\theta}($$

 $\mathcal{X}_{test} = \{70 \text{ cats}, 20 \text{ dogs}, 10 \text{ birds}\}$

conjuence

 $(\mathbf{y}|\mathbf{x}\in\mathcal{X}_p)$

- Confidence Calibrated
- Probability Calibrated

Set-up Examples

Case 1: ullet

$$P_{\theta}(\mathbf{y}|\mathbf{x}) = \begin{pmatrix} 0.7\\0.2\\0.1 \end{pmatrix}, \forall \mathbf{x} \in \mathcal{X}_{test} \implies \mathcal{X}_{test} = \mathcal{X}_{p}$$
$$\underline{\bar{P}(y = \operatorname{argmax} P_{\theta}(\mathbf{y}|\mathcal{X}_{p})|\mathcal{X}_{p})} = \underbrace{\max P_{\theta}(\mathbf{y}|\mathcal{X}_{p})}_{con \ fidence} = 0.7$$

accuracy

$$\hat{P}(\mathbf{y}|\mathbf{x} \in \mathcal{X}_p) = \begin{pmatrix} 0.7\\ 0.2\\ 0.1 \end{pmatrix} = P_{\theta}(\mathbf{x})$$

Case 2: \bullet

$$P_{\theta}(\mathbf{y}|\mathbf{x}) = \begin{pmatrix} 0.7\\ 0.18\\ 0.12 \end{pmatrix}, \forall \mathbf{x} \in \mathcal{X}_{test} \implies \mathcal{X}_{te}$$

$$\hat{P}(\mathbf{y}|\mathbf{x} \in \mathcal{X}_p) \neq P_{\theta}(\mathbf{y}|\mathbf{x} \in \mathcal{X}_p)$$

 $\mathcal{X}_{test} = \{70 \text{ cats}, 20 \text{ dogs}, 10 \text{ birds}\}$

conjiaence

 $(\mathbf{y}|\mathbf{x}\in\mathcal{X}_p)$

 $_{est} = \mathcal{X}_p$

- Confidence Calibrated
- Probability Calibrated

- Confidence Calibrated
- Probability Uncalibrated

Set-up Examples

• Case 1:

$$P_{\theta}(\mathbf{y}|\mathbf{x}) = \begin{pmatrix} 0.7\\0.2\\0.1 \end{pmatrix}, \forall \mathbf{x} \in \mathcal{X}_{test} \implies \mathcal{X}_{test} = \mathcal{X}_{p}$$
$$\bar{P}\left(y = \operatorname{argmax} P_{\theta}(\mathbf{y}|\mathcal{X}_{p})|\mathcal{X}_{p}\right) = \underbrace{\max P_{\theta}(\mathbf{y}|\mathcal{X}_{p})}_{0.1} = 0.7$$

accuracy

$$\hat{P}(\mathbf{y}|\mathbf{x} \in \mathcal{X}_p) = \begin{pmatrix} 0.7\\0.2\\0.1 \end{pmatrix} = P_{\theta}(\mathbf{x})$$

• Case 2:

$$P_{\theta}(\mathbf{y}|\mathbf{x}) = \begin{pmatrix} 0.7 \\ 0.18 \\ 0.12 \end{pmatrix}, \forall \mathbf{x} \in \mathcal{X}_{test} \implies \mathcal{X}_{test}$$

$$\hat{P}(\mathbf{y}|\mathbf{x} \in \mathcal{X}_p) \neq P_{\theta}(\mathbf{y}|\mathbf{x} \in \mathcal{X}_p)$$

$$P_{\theta}(\mathbf{y}|\mathbf{x} \in \mathcal{X}_p) = \begin{pmatrix} 0.7\\ \epsilon_+\\ 0.3 - \epsilon_+ \end{pmatrix}$$

 $\mathcal{X}_{test} = \{70 \text{ cats}, 20 \text{ dogs}, 10 \text{ birds}\}$

 $(\mathbf{y}|\mathbf{x}\in\mathcal{X}_p)$

Confidence Calibrated

Probability Calibrated

 $_{est} = \mathcal{X}_p$

- Confidence Calibrated
- Probability Uncalibrated

- Probability Calibrated only for \eps_+ = 0.2
- Confidence Calibrated throughout
- 70% Accurate throughout

Quantifying Miscalibration Confidence calibration – ECE, AdaECE, Reliability Histogram

accuracy

- Expected mismatch between accuracy and confidence [Naeini et al., AAAI15]
 - Discretize the space (binning)
 - Compute the mismatch/bin

 $P(\hat{y} = \operatorname{argmax} P_{\theta}(\mathbf{y}|\mathcal{X}_p)|\mathcal{X}_p) = \underbrace{\max P_{\theta}(\mathbf{y}|\mathcal{X}_p)}_{\mathcal{Y}_p}, \forall p$ confidence

$$ECE = \sum_{i=1}^{M} \frac{|B_m|}{n} |acc(B_m) - conf(B_m)|$$

Quantifying Miscalibration Confidence calibration – ECE, AdaECE, Reliability Histogram

accuracy

- Expected mismatch between accuracy and confidence [Naeini et al., AAAI15]
 - Discretize the space (binning)
 - Compute the mismatch/bin
- Other variants
 - Maximum Calibration Error [Naeini et al., AAAI15]
 - Class-wise ECE (stronger defn than ECE) [Kull et al., NeurIPS19]
 - Adaptive ECE [Mukhoti et al., NeurIPS20]

$$(\mathbf{y}|\mathcal{X}_p)|\mathcal{X}_p) = \underbrace{\max P_{\theta}(\mathbf{y}|\mathcal{X}_p)}_{confidence}, \forall p$$

$$ECE = \sum_{i=1}^{M} \frac{|B_m|}{n} |acc(B_m) - conf(B_m)|$$

Calibration - Why?

- Uncalibrated models can be wrong with high confidence \bullet
 - Autonomous driving
 - Medical Imaging etc. •
- Are NNs uncalibrated? ullet
 - Many studies have shown that they are, but why?
 - No single answer unfortunately

Calibration – How? Post-hoc (Temperature Scaling)

Temperature scaling — on a val set, find a positive temperature hyper-parameters to ensure decrease in ECE, while not modifying their accuracies [Guo et al., ICML17]

 $\sigma_T(s_i) =$

confident as T generally is >1.

$$\frac{\exp(\frac{s_i}{T})}{\sum_j \exp(\frac{s_j}{T})}$$

Works well as DNNs are overconfident but this approach effectively makes a model under-

Calibration — How? Post-hoc (Adaptive Temperature Scaling [Joy et al., AAAI 23])

- Temperature scaling Same T for all the samples
- However, different samples contribute differently to miscalibration

Calibration – How? Post-hoc (Adaptive Temperature Scaling [Joy et al., AAAI 23])

- Temperature scaling Same T for all the samples
- However, different samples contribute differently to miscalibration

 $\mathcal{L}(\mathbf{x}, y) = \mathbb{ELBO}[\Phi(\mathbf{x})] + \log \operatorname{Cat}(y \mid \operatorname{softmax}(\mathbf{s}/g_{\theta}(\tilde{q})))$

- VAE objective over feature space \bullet
 - Assuming feature space contains the necessary info
- Loglikelihood to ensure the error-behaviour on the val set \bullet remains the same.

Calibration — How? During training (Focal loss, MMCE, Brier Score, Label Smoothing)

Calibration — How? During training (Focal loss, MMCE, Brier Score, Label Smoothing)

Dataset	Model	Cross	-Entropy	Brier Loss		MMCE		LS-0.05		FL-3 (Ours)		FLSD-53 (Ours)	
		Pre T	Post T	Pre T	Post T	Pre T	Post T	Pre T	Post T	Pre T	Post T	Pre T	Post T
	ResNet-50	17.52	3.42(2.1)	6.52	3.64(1.1)	15.32	2.38(1.8)	7.81	4.01(1.1)	5.13	1.97(1.1)	4.5	2.0(1.1)
CIEAD 100	ResNet-110	19.05	4.43(2.3)	7.88	4.65(1.2)	19.14	3.86(2.3)	11.02	5.89(1.1)	8.64	3.95(1.2)	8.56	4.12(1.2)
CIFAK-100	Wide-ResNet-26-10	15.33	2.88(2.2)	4.31	2.7(1.1)	13.17	4.37(1.9)	4.84	4.84(1)	2.13	2.13(1)	3.03	1.64(1.1)
	DenseNet-121	20.98	4.27(2.3)	5.17	2.29(1.1)	19.13	3.06(2.1)	12.89	7.52(1.2)	4.15	1.25(1.1)	FLSD-53 (Or Pre T Pos 4.5 2.0(8.56 4.12 3.03 1.64 3.73 1.31 1.55 0.95 1.87 1.07 1.56 0.84 1.22 1.22 1.76 1.70 9.19 1.83	1.31(1.1)
	ResNet-50	4.35	1.35(2.5)	1.82	1.08(1.1)	4.56	1.19(2.6)	2.96	1.67(0.9)	1.48	1.42(1.1)	1.55	0.95(1.1)
CIEAD 10	ResNet-110	4.41	1.09(2.8)	2.56	1.25(1.2)	5.08	1.42(2.8)	2.09	2.09(1)	1.55	1.02(1.1)	1.87	1.07(1.1)
CIFAK-10	Wide-ResNet-26-10	3.23	0.92(2.2)	1.25	1.25(1)	3.29	0.86(2.2)	4.26	1.84(0.8)	1.69	0.97(0.9)	1.56	0.84(0.9)
	DenseNet-121	4.52	1.31(2.4)	1.53	1.53(1)	5.1	1.61(2.5)	1.88	1.82(0.9)	1.32	1.26(0.9)	1.22	1.22(1)
Tiny-ImageNet	ResNet-50	15.32	5.48(1.4)	4.44	4.13(0.9)	13.01	5.55(1.3)	15.23	6.51(0.7)	1.87	1.87(1)	1.76	1.76(1)
20 Newsgroups	Global Pooling CNN	17.92	2.39(3.4)	13.58	3.22(2.3)	15.48	6.78(2.2)	4.79	2.54(1.1)	8.67	3.51(1.5)	6.92	2.19(1.5)
SST Binary	Tree-LSTM	7.37	2.62(1.8)	9.01	2.79(2.5)	5.03	4.02(1.5)	4.84	4.11(1.2)	16.05	1.78(0.5)	9.19	1.83(0.7)

Table 1: ECE (%) computed for different approaches both pre and post temperature scaling (cross-validating T on ECE). Optimal temperature for each method is indicated in brackets. $T \approx 1$ indicates innately calibrated model.

Is calibration itself enough? **Reliable uncertainty estimation**

- Not necessarily •
 - •
 - What about out-of-distribution? ullet

It characterises behaviour on in-distribution and perhaps on domain shift datasets

Is calibration itself enough? **Reliable uncertainty estimation**

- Not necessarily
 - •
 - What about out-of-distribution?
- Ideally,
 - We would like models to be accurate and calibrated on in-distribution data lacksquare
 - And their uncertainties to increase as the input goes away from in-distribution
 - Heavy domain shift
 - Out of distribution \bullet

It characterises behaviour on in-distribution and perhaps on domain shift datasets

Improving Calibration and Uncertainty Estimates **RegMixup** [Pinto et al., NeurlPS22]

Explicitly ask the model to be **uncertain** (under confident) **outside** the data-distribution \bullet

 $\min_{\theta} -\log p(y|\mathbf{x} \in \mathcal{X}_{I}; \theta) - \mathcal{H}_{\bar{y}}(p(.|\mathbf{x} \in \bar{\mathcal{X}}_{O}; \theta)),$

Improving Calibration and Uncertainty Estimates **RegMixup** [Pinto et al., NeurIPS22]

- Explicitly ask the model to be **uncertain** (under confident) **outside** the data-distribution
 - $\min_{\theta} -\log p(y|\mathbf{x} \in \mathcal{X}_{I}; \theta) \mathcal{H}_{\bar{y}}(p(.|\mathbf{x} \in \bar{\mathcal{X}}_{O}; \theta)),$
- How do we obtain and use OOD data efficiently?

Improving Calibration and Uncertainty Estimates **RegMixup** [Pinto et al., NeurIPS22]

Explicitly ask the model to be **uncertain** (under confident) **outside** the data-distribution

$$\min_{\theta} - \log p(y | \mathbf{x} \in \mathcal{X}_I; \theta) - \mathcal{H}_{\bar{y}}(p(. | \mathbf{x} \in \bar{\mathcal{X}}_O; \theta)),$$

- How do we obtain and use OOD data efficiently?
 - Synthesize OOD using Mixup type interpolation

$$\bar{\mathbf{x}} = \lambda_0 \mathbf{x}_i + (1)$$

 $(1 - \lambda_0)\mathbf{x}_j, \quad if \ y_i \neq y_j.$

Improving Calibration and Uncertainty Estimates **RegMixup** [Pinto et al., NeurIPS22]

Explicitly ask the model to be **uncertain** (under confident) **outside** the data-distribution

$$\begin{split} \min_{\theta} &-\log p(y|\mathbf{x} \in \mathcal{X}_{I}; \theta) - \mathcal{H}_{\bar{y}}(p(.|\mathbf{x} \in \bar{\mathcal{X}}_{O}; \theta)), \\ \text{d use OOD data efficiently?} \\ \text{sing Mixup type interpolation} \\ \bar{\mathbf{x}} &= \lambda_{0} \mathbf{x}_{i} + (1 - \lambda_{0}) \mathbf{x}_{j}, \ if \ y_{i} \neq y_{j}. \end{split}$$

- How do we obtain and
 - Synthesize OOD us

Final RegMixup Objective \bullet

 $\operatorname{CE}(p_{\theta}(\hat{\mathbf{y}}|\mathbf{x}_{i}),\mathbf{y}_{i}) + \eta \operatorname{CE}(p_{\theta}(\hat{\mathbf{y}}|\bar{\mathbf{x}}_{i}),\bar{\mathbf{y}}_{i})$

(Note, first term is **not** present in standard Mixup — very simple modification yet highly effective)

Improving Calibration and Uncertainty Estimates RegMixup vs Mixup

Improving Calibration and Uncertainty Estimates **RegMixup vs Mixup**

- Is it doing anything interesting? \bullet
 - WideResNet28-10 trained on CIFAR10 lacksquare
 - 1K pairs of samples randomly selected lacksquareensuring they belong to **different classes**
 - For each pair, via convex combination, 20 \bullet samples are synthesised — total 20K samples
 - The heat-map is then created
 - Intensity of (\lambda, H) bin indicates the number of samples in that bin

(A relatively more regular behaviour of uncertainty w.r.t. input space for RegMixup)

Figure 3: Heatmaps of the entropy **profiles** as the interpolation factor $\lambda \in$ [0,1] between samples of two classes varies. Left (DNN), Middle (Mixup), Right (**RegMixup**). Note, RegMixup induces high-entropy barrier separating indistribution & out-distribution samples.

Improving Calibration and Uncertainty Estimates **RegMixup (Experiments) – In-distribution and covariate shift**

						Covariate Shift Accuracy										
							WR	N28-10			R50					
	IND Accuracy				С10-С	C10.1	C10.2	С100-С	С10-С	C10.1	C10.2	C100-0				
	WRN	WRN28-10 RN50		Methods		Accuracy (↑)			Accuracy		racy (↑)	(↑)				
	C10 (Test)	C100 (Test)	C10 (Test)	C100 (Test)	DNN	76.60	90.73	84.79	52.54	75.18	88.58	83.31	50.62			
Methods	Accur	racy (†)	Accu	racy (†)	Mixup	81.68	91.29	86.55	56.99	78.63	90.03	84.61	53.96			
DNN	96.14	81.58	95.19	79.19	RegMixup (our)	83.13	<u>92.79</u>	<u>88.05</u>	59.44	<u>81.18</u>	<u>91.58</u>	<u>86.72</u>	<u>57.64</u>			
Mixup RegMixup (our)	97.01 97.46	82.60 83.25	96.05 96.71	80.12 81.52	DNN-SN	76.56	91.01	84.72	52.61	74.88	88.26	82.96	50.55			
DNN-SN DNN-SRN	96.22 96.22	81.60 81.38	95.20 95.39	79.27 78.96	DININ-SKIN SNGP	77.21	90.88 90.80	85.24 84.95	52.54 57.23	- 75.40	88.01 -	83.49 -	50.48 -			
SNGP	95.98	79.20	-	-		/1.0	-	-	50.4	-	-	-	-			
DUQ	94.7	-	-	-	KFAC-LLLA	/6.56	90.68	84.68	52.57	/5.18	88.34	83.50	50.85			
KFAC-LLLA	96.11	81.56	95.21	79.41	AugMıx	<u>90.02</u>	91.6	85.9	<u>68.15</u>	-	-	-	-			
Augmix	96.40	81.10	-	-	$DE(\times 5)$	78.32	92.17	85.59	55.58	77.63	90.05	85.00	53.91			
DE (5×)	96.75	<u>83.85</u>	96.23	<u>82.09</u>												

Table 2: Accuracies (%) on IND samples for models trained on C10 and C100

Table 3: Accuracies (%) on covariate shifted samples for models trained on C10 and C100.

Improving Calibration and Uncertainty Estimates **RegMixup (Experiments) – Out-of-distribution (AUROC)**

			WRN	28-10			RN50							
	CIFAR10 (In-Distribution)			CIFAI	R100 (In-]	Distribution)	CIFA	R10 (In-I	Distribution)	CIFAR100 (In-Distribution)				
Out-of-Distribution	C100	SVHN	T-ImageNet	C10	SVHN	T-ImageNet	C100	SVHN	T-ImageNet	C10	SVHN	T-ImageNet		
Methods	AUROC (†)			AUROC (↑)			AUROC (↑)			AUROC (↑)				
DNN	88.61	96.00	86.44	81.06	79.68	80.99	88.61	93.20	87.82	79.33	82.45	79.89		
Mixup	83.17	87.53	84.02	78.37	78.68	80.61	84.24	89.40	84.89	77.02	76.86	80.14		
RegMixup (our)	89.63	96.72	<u>90.19</u>	81.27	<u>89.32</u>	83.13	89.63	<u>95.39</u>	90.04	79.44	<u>88.66</u>	<u>82.56</u>		
DNN-SN	88.56	95.59	87.71	81.10	83.43	82.26	88.19	93.46	87.55	79.20	80.78	79.90		
DNN-SRN	88.46	96.12	87.43	81.26	85.51	82.41	88.82	93.54	87.82	78.77	82.39	79.70		
SNGP	90.61	95.25	90.01	79.05	86.78	82.60	-	-	-	-	-	-		
KFAC-LLLA	89.33	94.17	87.81	81.04	80.32	81.57	89.54	93.13	88.32	79.30	82.80	80.17		
Aug-Mix	89.78	91.3	88.99	81.10	76.64	80.56	-	-	-	-	-	-		
DE (5×)	91.25	97.53	89.52	83.26	85.07	83.40	91.38	96.90	90.5	81.93	85.08	82.15		

Table 5: Out-of-distribution detection results (%) for WideResNet28-10 and ResNet50 for models trained on C10 and C100. See Appendix B for the cross-validated hyperparameters.

Improving Calibration and Uncertainty Estimates **RegMixup (Experiments) – Calibration**

	IND										
	WR	N28-10	R	N50							
	C10 (Test)	C100 (Test)	C10 (Test)	C100 (Test)							
Methods	AdaE	ECE (↓)	AdaECE (↓)								
DNN	1.34	3.84	1.45	2.94							
Mixup	1.16	1.98	2.17	7.47							
RegMixup (our)	<u>0.50</u>	<u>1.76</u>	<u>0.94</u>	<u>1.53</u>							
SNGP	0.87	1.94	-	-							
Augmix	1.67	5.54	-	-							
DE (5×)	1.04	3.29	1.28	2.98							

Table 6: CIFAR IND calibration performance (%).

Accuracy, Uncertainty estimates, and Calibration — all three aspects are improved

	Covariate Shift												
		WRI	N28-10										
	С10-С	C10.1	C10.2	С100-С	C10-C	C10.1	C10.2	C100-					
Methods		AdaH	E CE (↓)			AdaECE (↓)							
DNN	12.62	4.13	8.81	9.94	12.29	4.36	8.89	19.70					
Mixup	7.93	4.39	7.44	10.45	10.75	5.72	10.59	12.63					
RegMixup (our)	9.08	<u>2.57</u>	<u>6.83</u>	<u>7.93</u>	11.37	<u>2.89</u>	<u>6.74</u>	<u>11.4′</u>					
SNGP	11.34	4.36	8.33	10.43	-	-	-	-					
AugMix	<u>4.56</u>	3.23	8.33	12.15	-	-	-	-					
DE (5 ×)	10.31	2.60	7.50	12.36	12.68	4.10	6.94	12.30					

Table 8: CIFAR CS calibration performance (%).

·C

$$\begin{array}{c} \text{ID} \\ \text{Domain Shift} \\ \text{OOD} \end{array} X \xrightarrow{\text{Self-aware}} \\ \text{Object} \\ \text{Detector} \xrightarrow{\text{Object}} \left\{ \hat{a}, \left\{ \hat{c}_i, \hat{b}_i, \hat{p}_i \right\} \right\} \end{array}$$

Object detection is a **joint** task — classification and regression

$$\text{LaECE}^{c} = \sum_{j=1}^{J} \frac{|\hat{\mathcal{D}}_{j}^{c}|}{|\hat{\mathcal{D}}^{c}|} \left| \bar{p}_{j}^{c} - \frac{\hat{\mathcal{D}}_{j}^{c}}{|\hat{\mathcal{D}}^{c}|} \right|$$

 $-\operatorname{precision}^{c}(j) \times \overline{\operatorname{IoU}}^{c}(j)$

Object detection is a joint task — classification and regression

$$\text{LaECE}^{c} = \sum_{j=1}^{J} \frac{|\hat{\mathcal{D}}_{j}^{c}|}{|\hat{\mathcal{D}}^{c}|} \left| \bar{p}_{j}^{c} - \frac{\hat{\mathcal{D}}_{j}^{c}}{|\hat{\mathcal{D}}^{c}|} \right|$$

- Need a measure of uncertainty
- Create dataset using COCO, nulmages, Obj365, iNaturalist, etc.

 $-\operatorname{precision}^{c}(j) \times \overline{\operatorname{IoU}}^{c}(j)$

Turns out object detectors are very good at detecting OOD images if the uncertainties are quantified using only top-3 predictions (1-confidence)

of these images properly.

Figure A.17. Qualitative Results of F-RCNN vs. SA-F-RCNN on \mathcal{D}_{OOD} . The images in the first, second and third rows correspond SVHN, iNaturalist and Objects 365 subset of \mathcal{D}_{OOD} . While F-RCNN performs inference with non-empty detections sets, SA-F-RCNN rejects all

Mixture of Calibrated Experts (MoCaE)

[Oksuz et al., arXiv 23]

- Calibration IoU of True-positive lacksquareboxes with ground-truth should match confidence
- Given a trained model, take a valulletset, use Isotonic regression (or similar) to calibrate - that's it.

(d) Expert 1: RS R-CNN

(e) Expert 2: ATSS

(f) Expert 3: PAA

my water out

surfboard

(g) Mixture 8 f Uncalibrated Experts

(h) Mixture of Calibrated Experts

(i) Ground Truth Objects

Mixture of Calibrated Experts (MoCaE)

[Oksuz et al., arXiv 23]

Mixture of Calibrated Experts (MoCaE)

[Oksuz et al., arXiv 23]

Table 4. Object detection performance on COCO *test-dev* and *mini-test* using strong object detectors. The gains are reported compared to the best single model as underlined. MOCAE maintains the significant AP boost also for this challenging setting as well.

Method	Pretraining Data	Backbone	AP	$ AP_{50} $	$\begin{array}{c} \text{COCO t} \\ \text{ AP}_{75} \\ \end{array}$	test-dev AP _S	AP_M	$ AP_L $	AP	AP_{50}	COCO 1 AP ₇₅	minitest AP _S	AP _M	AP_{L}
YOLOv7 [60]	None	L-size conv.	55.5	73.0	60.6	37.9	58.8	67.7	55.6	73.1	60.6	41.2	60.4	69.5
QueryInst [17]	None	Swin-L	55.7	75.7	61.4	36.2	58.4	<u>70.9</u>	55.9	75.4	61.3	38.5	<u>60.8</u>	73.2
DyHead [13]	ImageNet22K	Swin-L	56.6	75.5	<u>61.8</u>	39.4	<u>59.8</u>	68.7	56.8	<u>75.6</u>	$\underline{62.2}$	$ \underline{42.8} $	60.6	71.0
Vanilla MoE	N/A	N/A				40.0	60.9	70.8		76.3	62.9	42.6	62.7	72.8
			+1.0	+0.9	+1.4	+0.0	+1.1	-0.1	+0.9	+0.7	+0.7	-0.2	+1.9	-0.4
MoCAE (Ours)	N/A	N/A	$\begin{vmatrix} 59.0 \\ +2.4 \end{vmatrix}$	77.2 +1.5	$egin{array}{c} {\bf 64.7} \\ {+2.9} \end{array}$	$\begin{vmatrix} \textbf{41.1} \\ +1.7 \end{vmatrix}$	$\begin{array}{c} 62.6 \\ +2.8 \end{array}$	72.4 +1.5	$\begin{array}{c} \textbf{58.9} \\ +2.1 \end{array}$	76.8 +1.1	64.3 +2.1	$\begin{vmatrix} \textbf{44.7} \\ +1.9 \end{vmatrix}$	$\begin{array}{c c} \textbf{63.6} \\ +2.8 \end{array}$	74.1 +1.1

To Summarise

- Calibration is important
- as one might impact another e.g., RegMixup
- produced so far
- Do we need new architectures? e.g., Transformers?
 - ECCV22]
- opportunity here
- tuning can cripple your foundation model;...;Mukhoti et al., arXiv23]

But thinking about all the failure modes together is crucial (calibration, OOD, covariate-shift)

Calibration for object detectors is quite open research problem with very limited work

• Turns out Transformers suffer from similar vulnerabilities as CNNs [An Impartial Take ...;Pinto et al.,

• LLMs – open problem but without proper penetration testing and reliability certificates, these models will most likely not be used in any safety-critical situations. There is a good research

Multi-modality (CLIP)? Can we continually fine-tune with reliability guarantees? Similar to [Fine-

Thank you for your time

Questions?