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Background

Neural Networks are mostly highly accurate and confident ...

> DNN Classifier >

Cat Dog
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... and very confident even when wrong (miscalibration)

> DNN Classifier >

Cat Dog



Background

... and very confident on Out-of-distribution data (unaware of unknowns)

> DNN Classifier >

Cat Dog

(ideally, we would like them to be uncertain on these samples)



Background

... and often wrong under covariate shift

> DNN Classifier >

Cat Dog
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Background

Why these problems?

* Qverparameterization and high capacity?

 Why confident even when wrong? * Poor regularisation?
 Why not uncertain on OOD data? * Spurious features?
 Why can’t they handle covariate shift? * Models not expressive enough??

e | ess data?

Perhaps because we didn’t ask them to be robust?

(Our design choices are mainly focused towards minimizing generalisation gap on a relatively
small dataset under controlled environment on metrics focused towards accuracy — far from the
real-world situations we would like answers for)
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First definition (Probability Calibration — The real one)
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Set-up

First definition (Probability Calibration — The real one)

Py(y|x) =p,Vx € X, )
/ . P(y|Xp) = Po(y|Xp) = p
X P(y|Xp)

~__/ vp

Xtest

Second definition ( — Mostly used in DNNSs)

/ max Py(y|x) =p,Vx € X,

X, P(y — argmax Pg(y\xp)wp) — max Py(y|X,) = p,¥p € [0, 1]
N —
#

accuracy con fidence
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Set-up

Examples

e (Case 1:

Po(y|x) =

Xiest = {70 cats, 20 dogs, 10 birds}

0.7
0.2 ,\V/X € Xiest = Xiest = Xp
0.1

P(y — argmax Pe(y|xp)|xp) — max Py(y|X,) = 0.7

J N e’

accuracy

WV .
con fidence

0.7

Plylx € &,) = (0.2) = Py(y|x € Xp)

0.1
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Set-up X,
Examples Xiest = {70 cats, 20 dogs, 10 birds}

07 Xtest
e Case 1: Py (YlX) = 0.2 ] ,VX € Xiest = Xiest = Xp
0.1

p (y = argmax Py (YIXp)IXp) = max Py(y|X,) = 0.7 « Confidence Calibrated
g _y N—r - »
con fidence  Probability Calibrated

Y o
accuracy

0.7

Plylx € &,) = (O.Z) = Py(y|x € Xp)
0.1

 Confidence Calibrated
 Probability Uncalibrated

0.7
¢ Case 2: Pg(y|X) = (018) ,\V/X c Xtest — Xtest = Xp
0.12

P(y|x Xp)7# Py (y|x € &p)
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Set-up Y

Examples Xiest = {70 cats, 20 dogs, 10 birds}
07 Xtest
e Case 1: P@(le) = 0.2 ] ,VX € Xiest = Xiest = Xp
0.1
P (y = argmax P (Y|Xp)|Xp) = max Py(y|X,) = 0.7  Confidence Calibrated
b acc;:acy g con fidence  Probability Calibrated
) 0.7
Plylx e Xy) = (02 ] = Py(y|x € &p)
0.1
C 5 0.7
e Case 2: P = [0.18] ,vx € &,., Xywor = X _ _
. 0.12 5 Mot T Hest = « Confidence Calibrated

 Probability Uncalibrated
P(y|x € &,)#Ps(y|x € &)

Py (y|x - Xp)

€+
0.3 — €+

 Confidence Calibrated throughout
« 70% Accurate throughout
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Quantifying Miscalibration
Confidence calibration — ECE, AdaECE, Reliability Histogram

P(gj = argmax Py (y\/\fp)\/\,’p) = max Py (y|&),), Vp
N— ——

con fidence

accuracy

* EXxpected mismatch between accuracy and confidence [Naeini et al., AAAI15]
* Discretize the space (binning)

M
* Compute the mismatch/bin ECE = Z Bim| lacc(B,,) — conf(By,)]
T
i=1
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Quantifying Miscalibration
Confidence calibration — ECE, AdaECE, Reliability Histogram

P(g) = argmax Py (y\/\.’p)\/\,’p) = max Py (y|&),), Vp
N— ——

accuracy con fidence

* EXxpected mismatch between accuracy and confidence [Naeini et al., AAAI15]
* Discretize the space (binning)

 Compute the mismatch/bin

M
BCE = 3 P jace(B,,) — conf (By.)
1=1

e QOther variants
e Maximum Calibration Error (Nacini et al., AAAITS

* (Class-wise ECE (stronger defn than ECE) [kuil et al., NeurlPs19]
 Adaptive ECE [Muknhoti et al., NeurlPS20]

16



Calibration - Why?

* Uncalibrated models can be wrong with high confidence
* Autonomous driving
 Medical Imaging etc.

* Are NNs uncalibrated?
 Many studies have shown that they are, but why?
* No single answer unfortunately

17



Calibration — How?

Post-hoc (Temperature Scaling)

 Temperature scaling — on a val set, find a positive temperature hyper-parameters to
ensure decrease in ECE, while not modifying their accuracies [Guo et al., ICML17]

exp( =

N )
or(si) = > exp(3)

 Works well as DNNs are overconfident but this approach effectively makes a model
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Calibration — How?

Post-hoc (Adaptive Temperature Scaling oy et ai., anni23)
* Temperature scaling —

* However, different samples contribute
differently to miscalibration
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Calibration — How?

Post-hoc (Adaptive Temperature Scaling oy et ai., anni23)

* Temperature scaling —

Neural Network

> N B
: _ L~ Feature Extractor (I)(CB) w | 8
* However, different samples contribute : Jy
differently to miscalibration - e2(e)
Z—>g(q)—t

L(x,y) = ELBO[®(x)] 4+ log Cat(y | softmax(s/ge(q))

Histogram of Temperature values

CIFAR-10-Correct
CIFAR-10-Incorrec t

* VAE objective over feature space AR 10 1 1eanec

* Assuming feature space contains the necessary info

* Loglikelihood to ensure the error-behaviour on the val set
remains the same. 5 10 1s 2o 75

Temperature
20 P




Calibration — How?
During training (Focal loss, MMCE, Brier Score, Label Smoothing)



Calibration — How?
During training (Focal loss, MMCE, Brier Score, Label Smoothing)

Dataset Model Cross-Entropy Brier Loss MMCE LS-0.05 FL-3 (Ours) FLSD-53 (Ours)
Pre T Post T Pre T Post T Pre T Post T Pre T Post T Pre T Post T Pre T Post T
ResNet-50 17.52 3.42(2.1) 6.52 3.64(1.1) 15.32 2.38(1.8) 7.81 4.01(1.1) 5.13 1.97(1.1) 4.5 2.0(1.1)
CIFAR-100 ResNet-110 19.05 4.43(2.3) 7.88 4.65(1.2) 19.14 3.86(2.3) 11.02 5.89(1.1) 8.64 3.95(1.2) 8.56 4.12(1.2)
Wide-ResNet-26-10 15.33 2.88(2.2) 4.31 2.7(1.1) 13.17 4.37(1.9) 4.84 4.84(1) 2.13 2.13(1) 3.03 1.64(1.1)
DenseNet-121 20.98 4.27(2.3) 5.17 2.29(1.1) 19.13 3.06(2.1) 12.89 7.52(1.2) 4.15 1.25(1.1) 3.73 1.31(1.1)
ResNet-50 4.35 1.35(2.5) 1.82 1.08(1.1) 4.56 1.19(2.6) 2.96 1.67(0.9) 1.48 1.42(1.1) 1.55 0.95(1.1)
CIFAR-10 ResNet-110 4.41 1.09(2.8) 2.56 1.25(1.2) 5.08 1.42(2.8) 2.09 2.09(1) 1.55 1.02(1.1) 1.87 1.07(1.1)
Wide-ResNet-26-10 3.23 0.92(2.2) 1.25 1.25(1) 3.29 0.86(2.2) 4.26 1.84(0.8) 1.69 0.97(0.9) 1.56 0.84(0.9)
DenseNet-121 4.52 1.31(2.4) 1.53 1.53(1) 5.1 1.61(2.5) 1.88 1.82(0.9) 1.32 1.26(0.9) 1.22 1.22(1)
Tiny-ImageNet ResNet-50 15.32 5.48(1.4) 4.44 4.13(0.9) 13.01 5.55(1.3) 15.23 6.51(0.7) 1.87 1.87(1) 1.76 1.76(1)
20 Newsgroups Global Pooling CNN 17.92 2.39(3.4) 13.58 3.22(2.3) 15.48 6.78(2.2) 4.79 2.54(1.1) 8.67 3.51(1.5) 6.92 2.19(1.5)
SST Binary Tree-LSTM 7.37 2.62(1.8) 0.01 2.79(2.5) 5.03 4.02(1.5) 4.84 4.11(1.2) 16.05 1.78(0.5) 0.19 1.83(0.7)

Table 1: ECE (%) computed for different approaches both pre and post temperature scaling (cross-
validating T on ECE). Optimal temperature for each method is indicated in brackets. 1" ~ 1 indicates
innately calibrated model.
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Is calibration itself enough?

Reliable uncertainty estimation

* Not necessarily
* |t characterises behaviour on in-distribution and perhaps on domain shift datasets
 What about ?

23



Is calibration itself enough?

Reliable uncertainty estimation

* Not necessarily
* |t characterises behaviour on in-distribution and perhaps on domain shift datasets

e What about ?

* |deally,
* We would like models to be accurate and calibrated on in-distribution data
* And their uncertainties to increase as the input goes away from in-distribution
* Heavy domain shift
e Qut of distribution

24



Improving Calibration and Uncertainty Estimates
RegMIXup (rinto et al., Neurips22)

* Explicitly ask the model to be uncertain (under confident) outside the data-distribution

mein—logp(y|x € Xr1;0) — Hyz(p(.|x € Xo0;0)),
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Improving Calibration and Uncertainty Estimates
RegMIXup (rinto et al., Neurips22)

* Explicitly ask the model to be uncertain (under confident) outside the data-distribution

mein—logp(y|x € Ar; 0) — 'Hg(p(.|x C )EOQ 9))7

« How do we obtain and use OOD data efficiently?
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Improving Calibration and Uncertainty Estimates
Reg M ixup [Pinto et al., NeurlPS22]

* Explicitly ask the model to be uncertain (under confident) outside the data-distribution

mein—logp(y\x € Xr1;0) — Hyz(p(.|x € Xo; 0)),

« How do we obtain and use OOD data efficiently?

* Synthesize OOD using Mixup type interpolation

X = )\oxi + (]. — )\0)){]', ’Lf Y; 75 Y-

(= ] = = Pt ] Lu Ly
= LA Lot LA [ LA = LA
L
--.-"“‘-.__
m__r,\!
.-’I
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Improving Calibration and Uncertainty Estimates
Reg M ixup [Pinto et al., NeurlPS22]

* Explicitly ask the model to be uncertain (under confident) outside the data-distribution

mein—logp(y\x € Xr1;0) — Hyz(p(.|x € Xo; 0)),

« How do we obtain and use OOD data efficiently?

* Synthesize OOD using Mixup type interpolation . k

X = )\Oxz- + (1 — )\0))(]', ’Lf Y; 75 Y-

* Final RegMixup Objective
CE(po(y|xi),yi) + 1 CE(pe(¥]Xi),¥:)

(Note, first term is not present in standard Mixup — very simple modification
yet highly effective)
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Improving Calibration and Uncertainty Estimates
RegMixup vs Mixup

Mixup
A ~ Beta(0.1,0.1)

RegMixup
)\ ~ Beta(10, 10)




Improving Calibration and Uncertainty Estimates
RegMixup vs Mixup

720

- 600
529
47

- Is it doing anything interesting? 100! B
= .* L an

\
 WideResNet28-10 trained on CIFAR10 050 -
1K pairs of samples randomly selected 000 i

ensuring they belong to different classes

A

 For each pair, via convex combination, 20

Fi . Heat f th t
samples are synthesised — total 20K 1gure 3 catmaps 0 € cntropy

profiles as the interpolation factor A €

samples 0, 1] between samples of two classes

* The heat-map is then created varies. Left (DNN), Middle (Mixup),
* Intensity of (\lambda, H) bin indicates the Right (RegMixup). Note, RegMixup in-
number of samples in that bin duces high-entropy barrier separating in-

distribution & out-distribution samples.

(A relatively more regular behaviour of uncertainty w.r.t. input space for RegMixup)
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RegMixup (Experiments) — In-distribution and covariate shift

IND Accuracy
WRN28-10 RN50
C10 (Test) C100 (Test) | C10 (Test) C100 (Test)

Methods Accuracy (1) Accuracy (1)
DNN 96.14 81.58 95.19 79.19
Mixup 97.01 82.60 96.05 80.12
RegMixup (our) 97.46 83.25 96.71 81.52
DNN-SN 96.22 81.60 95.20 79.27
DNN-SRN 96.22 81.38 95.39 78.96

SNGP 95.98 79.20 - -

DUQ 94.7 - - -
KFAC-LLLA 96.11 81.56 95.21 79.41

Augmix 96.40 81.10 - -
DE (5X%) 96.75 83.85 96.23 82.09

Table 2: Accuracies (%) on IND samples for mod-

els trained on C10 and C100

Improving Calibration and Uncertainty Estimates

Covariate Shift Accuracy

WRN28-10 R50
C10-C C10.1 C10.2 C100-C | C10-C C10.1 C10.2 cC100-C
Methods Accuracy (1) Accuracy (1)

DNN 76.60 90.73 84.79 52.54 75.18  88.58 83.31 50.62
Mixup 81.68 91.29 86.55 56.99 78.63 90.03 84.61 53.96
RegMixup (our) 83.13 92.79 88.05 59.44 81.18 91.58 86.72 57.64
DNN-SN 76.56 91.01 84.72 52.61 74.88 88.26 82.96 50.55
DNN-SRN 7721  90.88 85.24 52.54 75.40 88.61 83.49 50.48

SNGP 78.37 90.80 84.95 57.23 - - - -

DUQ 71.6 - - 50.4 - - - -
KFAC-LLLA 76.56 90.68 84.68 52.57 75.18 88.34  83.50 50.85

AugMix 90.02 91.6 85.9 68.15 - - - -
DE (x 5) 78.32 92.17 85.59 55.58 77.63 90.05 85.00 53.91

Table 3: Accuracies (%) on covariate shifted sam-
ples for models trained on C10 and C100.
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Improving Calibration and Uncertainty Estimates
RegMixup (Experiments) — Out-of-distribution (AUROC)

CIFAR10 (In-Distribution)

WRN28-10

CIFAR100 (In-Distribution)

CIFAR10 (In-Distribution)

RNS0
CIFAR100 (In-Distribution)

Out-of-Distribution | C100 SVHN T-ImageNet C10 SVHN T-ImageNet C100 SVHN T-ImageNet C10 SVHN T-ImageNet
Methods AUROC (1) AUROC (1) AUROC (1) AUROC (1)
DNN 88.61  96.00 86.44 81.06 79.68 80.99 88.61 93.20 87.82 79.33  82.45 79.89
Mixup 83.17 87.53 84.02 78.37  78.68 80.61 84.24 89.40 84.89 77.02  76.86 80.14
RegMixup (our) 89.63  96.72 90.19 81.27 89.32 83.13 89.63 95.39 90.04 79.44  88.66 82.56
DNN-SN 88.56 95.59 87.71 81.10 83.43 82.26 88.19 93.46 87.55 79.20  80.78 79.90
DNN-SRN 88.46  96.12 87.43 81.26 85.51 82.41 88.82 93.54 87.82 78.77  82.39 79.70
SNGP 90.61 95.25 90.01 79.05 86.78 82.60 - - - - - -
KFAC-LLLA 89.33 94.17 87.81 81.04 80.32 81.57 89.54 93.13 88.32 79.30  82.80 80.17
Aug-Mix 89.78 91.3 88.99 81.10 76.64 80.56 - - - - - -
DE (5x%) 91.25 97.53 89.52 83.26  85.07 83.40 91.38  96.90 90.5 81.93  85.08 82.15

Table 5: Out-of-distribution detection results (%) for WideResNet28-10 and ResNet50 for models
trained on C10 and C100. See Appendix B for the cross-validated hyperparameters.
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Improving Calibration and Uncertainty Estimates
RegMixup (Experiments) — Calibration

IND Covariate Shift
WRN28-10 RNS50 WRN28-10 R50
C10 (Test) C100 (Test) | C10 (Test) C100 (Test) C10-C C10.1 C10.2 C100-C | C10-C C10.1 C10.2 C100-C
Methods AdaECE ()) AdaECE (|) Methods AdaECE (J) AdaECE (])
DNN 1.34 3.84 1.45 2.94 DNN 12.62 4.13 8.81 9.94 12.29 4.36 8.89 19.76
Mixup 1.16 1.98 217 747 Mixup 7.93 4.39 7.44 10.45 10.75 5.72 10.59 12.63
RegMixup (our) 0.50 1.76 0.94 1.53 RegMixup (our)  9.08 2.57 6.83 7.93 11.37 2.89 6.74 11.47
SNGP 0.87 1.94 ) _ SNGP 11.34 4.36 8.33 10.43
Augmix 1.67 5.24 ) ) AugMix 4.56 3.23 8.33 12.15
DE (5x) 1.04 399 1.28 208 DE (5 %) 10.31 2.60 7.50 12.36 12.68 4.10 6.94 12.36

Table 6: CIFAR IND calibration performance (%). Table 8: CIFAR CS calibration performance (%).

Accuracy, Uncertainty estimates, and Calibration — all three aspects are improved
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Calibrating Object Detectors

Self-Aware Object Detectors oxsuz et a1, cveres

Test Set Model Type Task Specification Example Output Evaluation
— — e e, | m—
D h‘i ! |'M m ;,'i'——.:__ Only AP

Detector B e B | [ Accuracy
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Calibrating Object Detectors

Self-Aware Object Detectors oxsuz et a1, cveres

Test Set

1D

~

-

—

1D

OOD

Domain Shift

N

Model Type Task Specification

Detector

Self-aware
Object
Detector

{¢ubipi},_,

{a,{¢, by, ﬁi}?’:l}

35

REJECT

The detector 1s
uncertain on image X

Evaluation

Only
Accuracy

Accuracy
Calibration

OOD

DAQ

—



Calibrating Object Detectors

Self-Aware Object Detectors oksu: cial, cveres

* Object detection is a joint task — classification and regression

D¢

C
J

De

C

iz

LaECES€ = Z precision® () X IoU® (7 )f

J=1
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Calibrating Object Detectors

Self-Aware Object Detectors oksu: cial, cveres

* Object detection is a joint task — classification and regression

D¢

C
J

De

—C

’pj

LaECE® = Z

g=1

precision®(j) x IoU*(j)|

 Need a measure of uncertainty

* Turns out object detectors are very good at detecting OOD images if the
uncertainties are quantified using only top-3 predictions (1-confidence)

* Create dataset — using COCO, nulmages, Obj365, iNaturalist, etc.
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Calibrating Object Detectors

Self-Aware Object Detectors oxsuz et a1, cveres

Image/Ground Truth Output of F-RCNN OQutput of SA-F-RCNN

REJECT

REJECT
REJECT

Figure A.17. Qualitative Results of F-RCNN vs. SA-F-RCNN on Doop. The images in the first, second and third rows correspond SVHN,
iNaturalist and Objects365 subset of Doop. While F-RCNN performs inference with non-empty detections sets, SA-F-RCNN rejects all
of these images properly.




Mixture of Calibrated Experts (MoCakE)

[Oksuz et al., arXiv 23]

Calibration — loU of True-positive
boxes with ground-truth should
match confidence

Given a trained model, take a val-
set, use Isotonic regression (or
similar) to calibrate — that’s it.

100 100 100
RS R-CNN RS R-CNN RS R-CNN
o 80 mEm ATSS o 80 mEE ATSS 2 80 mEE ATSS
R R R
£ 60 . PAA £ 60 s PAA £ 60 . PAA
3 ! !
] cu v
E 40- E 40+ E 40-
o o o
X 20 X 20 X 20
0' ; ,4J_,_‘_,——_,_ 0v 'L,*_g_,____,_ 0, ; IL,LILI
0.0 02 04 06 08 1.0 0.0 0.2 04 06 08 1.0 0.0 0.2 04 06 08 1.0
confidence score confidence score confidence score
(a) Uncalibrated confidence scores (b) Calibrated confidence scores (c) Target confidence scores

(d) Expert 1: RS R-CNN (e) Expert 2: ATSS (f) Expert 3: PAA

(g) Mixtus8Df Uncalibrated Experts (h) Mixture of Calibrated Experts (i) Ground Truth Objects



Mixture of Calibrated Experts (MoCakE)

[Oksuz et al., arXiv 23]
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Mixture of Calibrated Experts (MoCakE)

[Oksuz et al., arXiv 23]

[ N {ﬁ’ b}> » ‘ {ﬁraw, Erawi
- {p B} pMOE ATAW Lraw ﬁMOE
X0 OT 2 gug —> ) :: ).€wq Detector 2 Ll }; N ::
7 | — 5 5 MOE v gram, NMS jMOE
Detector 3 ~>L —> Detector ? ' >

Table 4. Object detection performance on COCO fest-dev and mini-test using strong object detectors. The gains are reported compared to the
best single model as underlined. MOCAE maintains the significant AP boost also for this challenging setting as well.

Method Pretraining | Backbone COCO test-dev COCO minitest
Data AP | APso | AP75 || APs | AP | APL AP | APso | AP75 || APs | AP | APy
YOLOvV7 [60] None L-size conv. || 55.5 | 73.0 | 60.6 || 37.9 | 58.8 | 67.7 || 55.6 | 73.1 | 60.6 || 41.2 | 60.4 | 69.5
QuerylInst [17] None Swin-L 50.7 | 75.7 | 61.4 || 36.2 | 58.4 | 70.9 [[ 55.9 | 75.4 | 61.3 || 38.5 | 60.8 | 73.2
DyHead [13] |ImageNet22K | Swin-L 56.6 | 75.5 | 61.8 || 39.4 | 59.8 | 68.7 || 56.8 | 75.6 | 62.2 || 42.8 | 60.6 | 71.0
Vanilla MoE N/A N/A 57.6 | 76.6 | 63.2 || 40.0 | 60.9 | 70.8 || 7.7 | 76.3 | 62.9 || 42.6 | 62.7 | 72.8
+1.0{+09|+14|+0.6|+1.1|-0.1{{+0.9| +0.7 | 4+0.7 || —-0.2 | +1.9 | —0.4
MOCAE N/A N/A 59.0| 77.2|164.7 ||41.1]62.6 |72.4(/58.9|76.8 |64.3 (([44.7/63.6 |74.1
(Ours) +2.4| +1.5 | +29 || +1.7|+2.8 |+1.5||+2.1| +1.1 | +2.1 [|+1.9|+2.8 | +1.1
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To Summarise

Calibration is important

But thinking about all the failure modes together is crucial (calibration, OOD, covariate-shift)
as one might impact another — e.g., RegMixup

Calibration for object detectors is quite open research problem with very limited work
produced so far

Do we need new architectures? e.qg., Transformers?

e Turns out Transformers suffer from similar vulnerabilities as CNNS [An impartial Take ...:Pinto et al.,
ECCV22]

LLMs — open problem but without proper penetration testing and reliability certificates, these
models will most likely not be used in any safety-critical situations. There is a good research
opportunity here

Multi-modality (CLIP)? Can we continually fine-tune with reliability guarantees? Similar to [Fine-



Thank you for your time

Questions?
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