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Deep Networks Do Not Necessarily 
Know What They Don’t Know…

Model trained on BDD dataset 
produces overconfident 
predictions for unknown object 
“helicopter”
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Truck

Du et al., VOS: Learning What You Don’t Know by Virtual Outlier Synthesis, ICLR, 2022



https://www.youtube.com/watch?v=umbpc47iR64
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Out-of-distribution Detection: A Simple View
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CIFAR-10 (in-distribution) SVHN (OOD)

Out-of-distribution Detection



Slide from OpenAI

CIFAR-10 The Internet

Out-of-distribution Detection



Out-of-distribution detection is a hard problem. Why?



Challenges
‣       Lack of supervision from unknowns during training 
         (model is trained only on the green and blue dots, using empirical risk minimization)
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Challenges
‣       Lack of supervision from unknowns during training 
         (model is trained only on the green and blue dots, using empirical risk minimization)

‣    Huge space of unknowns in the high-dimensional space 
         (hard to anticipate orange dots in advance)
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Challenges
‣ High-capacity neural networks exacerbate over-confident predictions  
         (ill-fated decision boundary which cannot distinguish ID vs. OOD)



Challenges
‣ High-capacity neural networks exacerbate over-confident predictions  
         (ill-fated decision boundary which cannot distinguish ID vs. OOD)

In-distribution: mixture of 3 Gaussians

Class 1 Class 2

Class 3



Challenges
‣ High-capacity neural networks exacerbate over-confident predictions  
         (ill-fated decision boundary which cannot distinguish ID vs. OOD)

Class 1 Class 2

Class 3

Decision boundary learned by a simple MLP 
(Overconfident in red regions)



Challenges
‣     Real-world images are composed of numerous objects and components.                       
(Need finer-grained understanding of OOD at the object-level, not just image-level)



Thriving literature on OOD detection



Tutorial Outline

• Inference-time OOD detection

• Output-based methods

•  Training-time regularization for OOD detection 

• Distance-based methods

•  Safety-aware learning objective 

• Synthesizing virtual outliers

• Leveraging wild unlabeled data



f (x;θ )

Trained on in-distribution data 
(e.g., CIFAR-10), freeze parameters

Inference-Time Out-of-distribution Detection
Method Overview

Empirical risk minimization:

V. Vapnik. Principles of risk minimization for learning theory. NIPS 1991 



Out-of-distribution Detection
Method Overview

f (x;θ )

Trained on in-distribution data 
(e.g., CIFAR-10), freeze parameters

Trained on in-distribution data 
(e.g., CIFAR-10), freeze parameters

xTest input

S: Scoring function



How to define OOD scoring function?
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f (x;θ )

x

Maximum Softmax  
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Softmax Score
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`

S(x; f ) = max
i

A Simple Baseline

Hendycks et al., A Baseline for Detecting Misclassified and Out-of-distribution Samples in Neural Networks. ICLR 2017



Maximum Softmax  
Prob

Frequency

in-distribution (ID)

out-of-distribution (OOD)

Softmax Score

S(x; f )

`MSP can be non-distinguishable 
between ID and OOD data

A Simple Baseline



Energy-based Out-of-distribution Detection

f (x;θ )

Energy Function

Negative Energy

Frequency

threshold τ

in-distribution

out-of-distribution

E(x; f )x

Liu et al., Energy-based Out-of-distribution Detection, NeurIPS 2020



Energy-based Model

x ∈ ℝD

y
“cat”

E(x, y)

Energy can be turned into probability through Gibbs distribution:

energy value ∈ ℝ



Energy-based Model
Energy can be turned into probability through Gibbs distribution:

Partition function

Free energy can be expressed as the negative of the log partition function:



Energy-based Interpretation of Classification Model
f (x;θ )

x
f1(x)
f2(x)
fy(x)

p(y |x)

softmax

E(x, y) = − fy(x)



f (x;θ )

x
f1(x)
f2(x)
fy(x)

Free energy can be expressed as the negative of the LogSumExp:

input Neural nets

p(y |x)

softmax

Energy-based Interpretation of Classification Model



Energy-based Out-of-distribution Detection

f (x;θ )

Energy Function
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f (x;θ )

Energy Function

Negative Energy

Frequency

threshold τ

in-distribution

out-of-distribution

E(x; f )x

Energy function has an inherent connection to the log likelihood 
(but not identical — will come back to this). 

Softmax vs. energy scores



Softmax vs. energy scores

`



More Results
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Tutorial Outline

• Output-based methods

•  Training-time regularization for OOD detection 

• Distance-based methods

•  Safety-aware learning objective 

• Synthesizing virtual outliers

• Leveraging wild unlabeled data

• Inference-time OOD detection



Penultimate layer

x Test input

Mahalanobis distance (parametric)

Lee et al., A simple unified framework for detecting out-of-distribution samples and adversarial attacks. NeurIPS 2018

Idea: Model the feature space as a mixture of multivariate Gaussian distribution, one 
for each class.  Use distance to the closest centroid as a proxy for OOD measure.



Penultimate Layer’s Feature 
with Contrastive Learning

Penultimate Layer’s Feature 
without Contrastive Learning

OOD (LSUN)ID (10 Classes in CIFAR-10) 

The k-th Nearest Neighbor 
Distance Distribution
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Distance Distribution

Limitations:  
(1) strong distributional assumption (features may not 

necessarily be Gaussian-distributed) 
(2) Suboptimal embedding 

Mahalanobis distance (parametric)



Penultimate Layer’s Feature 
with Contrastive Learning

Penultimate Layer’s Feature 
without Contrastive Learning

OOD (LSUN)ID (10 Classes in CIFAR-10) 

The k-th Nearest Neighbor 
Distance Distribution
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The k-th Nearest Neighbor 
Distance Distribution

Limitations of Maha distance:  
(1) strong distributional assumption 
(2) Suboptimal embedding 

Solution to (1)
Solution to (2)

Nearest Neighbor Distance (non-parametric)

Sun et al., Out-of-distribution Detection with Deep Nearest Neighbors, ICML 2022



Ming et al., How to Exploit Hyperspherical Embeddings for Out-of-Distribution Detection? ICLR 2023

CIDER
Learning optimal hyper-spherical embeddings for OOD detection



CIDER

Ming et al., How to Exploit Hyperspherical Embeddings for Out-of-Distribution Detection? ICLR 2023



Scoring function is only part of the solution…



Mitigating OOD Risk Requires Rethinking 
Learning Algorithm Design
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- Existing learning algorithms are primarily driven by optimizing accuracy only 
on the ID data, but do not account for uncertainty from outside ID data.

Uncertainty estimates of model 
trained using standard CE loss

(not ideal)

Class 1 Class 2

Class 3

Insufficiency of ERM

Empirical risk minimization:



(Not ideal) (Ideal)

- We need training-time regularization that explicitly accounts for uncertainty 
outside ID data. 

How?

Going beyond ERM



Dual objectives in learning (ID classification and OOD detection):

Safety-aware learning objective



Dual objectives in learning (ID classification and OOD detection):

Safety-aware learning objective



Negative energy score

ID: pulls up score > 0OOD: pushes down 
score < 0

Recall that:



Training-time Regularization Improves ID/OOD Separability
ID: CIFAR-10 
OOD: SVHN

Caveat: requires auxiliary outlier training data, which can be difficult to obtain



How to obtain auxiliary OOD training data, for free?
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Du et al., VOS: Learning What You Don’t Know by Virtual Outlier Synthesis, ICLR, 2022

Sample low-likelihood data points in the feature space for model regularization
Virtual Outlier Synthesis



Du et al., VOS: Learning What You Don’t Know by Virtual Outlier Synthesis, ICLR, 2022

Sample low-likelihood data points in the feature space for model regularization
Virtual Outlier Synthesis

h(x; θ)

Modeling feature representation as class-conditional Gaussian distribution



Du et al., VOS: Learning What You Don’t Know by Virtual Outlier Synthesis, ICLR, 2022

Sample low-likelihood data points in the feature space for model regularization
Virtual Outlier Synthesis

Sample virtual outliers from the class-conditional Gaussian distribution



Du et al., VOS: Learning What You Don’t Know by Virtual Outlier Synthesis, ICLR, 2022

Generated Virtual Outliers

Sample low-likelihood data points in the feature space for model regularization
Virtual Outlier Synthesis

Sampling for each class-conditional distribution

v



Du et al., VOS: Learning What You Don’t Know by Virtual Outlier Synthesis, ICLR, 2022

Generated Virtual Outliers

Sample low-likelihood data points in the feature space for model regularization
Virtual Outlier Synthesis

E(v; θ) = − log
K

∑
k=1

efk(v;θ)

Calculate model output & energy score for virtual outliers

v



Du et al., VOS: Learning What You Don’t Know by Virtual Outlier Synthesis, ICLR, 2022

Learning Objective with Virtual Outliers
Our learning framework jointly optimizes for both: (1) accurate classification of 
samples from ID, and (2) reliable detection of data from outside ID.



Virtual Outlier Synthesis for Object Detection

Backbone Network
Classification HeadID Samples

Virtual 
Outliers 

Regression Head

Linear
Transformation

Logistic 
Regression

Uncertainty score

Generated Virtual Outliers

Anchor/Proposal 
Generator

Input

Density

Negative Energy Score

OOD
ID

VOS is a general learning framework that is suitable for both object detection and 
image classification tasks. 



Current ML model Our proposal

Unknown

Without VOS

Results



Current ML model Our proposal

Unknown

Without VOS With VOS

Results



Non-Parametric Outlier Synthesis

Tao et al., Non-Parametric Outlier Synthesis, ICLR, 2023



Non-Parametric Outlier Synthesis

Sampling virtual outliers without making distributional assumption about 
feature embedding. Strong generality and flexibility. 



How to obtain natural outlier training data, for free?
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car truck

pedestrian bicycle

car truck

pedestrian bicycleDeploy model in the wild

unknown

unknown

Leveraging Wild Unlabeled Data for OOD Detection



car truck

pedestrian bicycle

car truck

pedestrian bicycleDeploy model in the wild

unknown

unknown

Advantages: (1) data is available in abundance, (2) does not require any 
human annotation, and (3) is often a much better match to the true test time 
distribution than data collected offline.

Leveraging Wild Unlabeled Data for OOD Detection



car truck

pedestrian bicycle

car truck

pedestrian bicycleDeploy model in the wild

unknown

unknown

Challenges: Wild data is not pure, and consists of both ID data and OOD data

Leveraging Wild Unlabeled Data for OOD Detection



[1] Katz-Samuels et al,, Training OOD Detectors in their Natural Habitats, ICML 2022
[2] Du et al., Unknown-Aware Object Detection: Learning What You Don’t Know from Videos in the Wild, CVPR 2022
[3] Bai et al., Feed Two Birds with One Scone: Exploiting Wild Data for Both OOD Generalization and Detection, ICML 2023



Summary

• Output-based methods

•  Training-time regularization for OOD detection 

• Distance-based methods

•  Safety-aware learning objective 

• Synthesizing virtual outliers

• Leveraging wild unlabeled data

• Inference-time OOD detection



Thank you!
sharonli@cs.wisc.edu
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