A Tutorial on Out-of-Distribution Detection

Sharon Yixuan Li
Department of Computer Sciences
University of Wisconsin-Madison

@ICCV 2023



\ e : ) "A"p.'f_l -\-‘.‘|
e - ::: :.':- :”."c,-.-":,: .
.-._” AFN -"-.'.

v’

oy
N l-‘”’ >
s
o

e

ryt Y

YR
RN

SEOS

" _l :
.'car,oa,rfc?’

<y
U




rks Do Not Necessarily
iat They Don't Know...

VT AN /NS
. 5 ’..“o ‘
. S - 2 - » !
e Kra . | ~
» 3 , & »y > .) v -/
- ) -— ’ .‘.-a ~ ‘-'
I" . - N - - -
e PN - TN .
I - » . -

LRI < e
'.

~r ' R -
§ X tr ck 70%";‘(:‘:’ )

U
i 4

- . *“N‘-'Q."
. ) m?- ‘

W
< .\:;\ sfb 3 - AT -
. e < ¢ ‘. ..-5§_‘ .
?;o‘.;'.:.“‘ - ,“g th.
w

‘ Pedestrian

- _».c':‘. = §. 3 o S e (N N
- \)9 'll‘i o A ) a‘ = ‘.} ~.§\ -\“‘

PN= nedexirian 76% B
ey Pedestiu, + o7 L

H 87 Bhcar 98% gt

Model trained on BDD dataset
poroduces overconfident
predictions for unknown object
"helicopter”

. — . - . o e - : - P . . E

= . v ra > e m _ P . ’ ' e " . - . o >

v Ly - o b . 1= ra . . - -~ ~ » Lt Ty
. -~ - - S - . -~ Y . 3 . ".. e A e . \. . ~ ¢

o...' -
e 2 TISA

al Qutlier Synthesis, ICLR, 2022
SR

.
5

-
.

-



A Tesla vehicle using ‘Smart Summon’ appears to
crash into a $3.5 million private jet

More money, more problems

By Andrew J. Hawkins | @andyjayhawk | Apr 22, 2022, 3:03pm

DRIVERLESS TESLA CRASHES INTO
A JET WORTH $3 MILLION



https://www.youtube.com/watch?v=umbpc47iR64

Pedestrian




Out-of-distribution Detection: A Simple View

Closed-world

Input space: X = R?
Label space: y = {1,-1}



Out-of-distribution Detection: A Simple View

Closed-world Open-world

Unknown class from -
out-of-distribution data °




Out-of-distribution Detection
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Out-of-distribution Detection

CIFAR-10 The Internet

|

Slide from OpenAl



Out-of-distribution detection is a hard problem. Why?



Challenges

Lack of supervision from unknowns during training
(model is trained only on the green and blue dots, using empirical risk minimization)




Challenges

Lack of supervision from unknowns during training
(model is trained only on the green and blue dots, using empirical risk minimization)

Huge space of unknowns in the high-dimensional space
(hard to anticipate orange dots in advance)

Unknown class from ©
out-of-distribution data .
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Challenges

High-capacity neural networks exacerbate over-confident predictions
(ill-fated decision boundary which cannot distinguish ID vs. OOD)
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Challenges

High-capacity neural networks exacerbate over-confident predictions
(ill-fated decision boundary which cannot distinguish ID vs. OOD)

Class 1

Class 3

@
Class 2

In-distribution: mixture of 3 Gaussians
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Challenges

High-capacity neural networks exacerbate over-confident predictions
(ill-fated decision boundary which cannot distinguish ID vs. OOD)

In-distribution Data

Class 3

High ID score

Low 1D score

Decision boundary learned by a simple MLP
(Overconfident in red regions)



Challenges

»  Real-world images are composed of numerous objects and components.
(Need finer-grained understanding of OOD at the object-level, not just image-level)
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Thriving literature on OOD detection

=) I‘!{fs’\lv > cs > arXiv:2110.11334

Computer Science > Computer Vision and Pattern Recognition

[Submitted on 21 Oct 2021 (v1), last revised 3 Aug 2022 (this version, v2)]
Generalized Out-of-Distribution Detection: A Survey

Jingkang Yang, Kaiyang Zhou, Yixuan Li, Ziwei Liu

§ 5.1.1.a: Post-hoc Detection [55], [187], [188], [189], [190], [191], [192]

58], [192], [192], [194], [195], [196], [197], [198], [199], [200]
3 5:1.1.b: Cont. Enhancement [201], [202], [203], [204], [205], [206], [207], [208], [209]

¢ 5.1 § 5.1.1.c: Outlier Exposure (OE) [52], [210], [211], [212], [212], [214], [215], [216], [217], [218], [219]

8 5 Classification § 5.1.2: OOD Data Generation [220], [221], [222], [223]

Out-of-Distribution § 5.1.3: Gradient-based Methods [188], [191]

Detection - ——— — —
§ 5.1.4: Bayesian Models [224], [225], [226], [227], [228], [229]
§ 5.1.5: Large-scale OOD Detection [168], [171], [230], [231]

: 571, [88], [89], [90], [92], [121], [207], [232], [233], [234], [235]
5.2: Density-based Methods (571, 1561 1521, [._..,_..ﬁ a7 [l [901 [9An1 ’ '
3 [236], [237], [238], [239], [240]

§ 5.3: Distance-based Methods [2071], [241], [242], [243], [244], [245], [246]




Tutorial Outline

 Inference-time OOD detection

e Output-based methods

e Distance-based methods

 Training-time regularization for OOD detection

e Safety-aware learning objective
e Synthesizing virtual outliers

® | everaging wild unlabeled data



nterence-lime Qut-of-distribution Detection
Method Overview

e |- | e f(x;0)
gﬂaggﬁnﬂsp
%Eg-‘\;s= Empirical risk minimization:

Pl By R T __ 1\ N\ .
HEsasBnn. s — Reosed(f) = 7 2zt €(f(Xi), yi)
LEEAROS A6 E ) .
e f* = argmin cr Reoea(f)
% s N E S TS

Trained on Iin-distribution data
(e.g., CIFAR-10), freeze parameters

V. Vapnik. Principles of risk minimization for learning theory. NIPS 1991



Out-of-distribution Detection
Method Overview

f(x;0)

lest input X—> — G\(x;f) =

in  S(x;f) >\
{Out S(x;f) < A

S: Scoring function

Trained on in-distribution data
(e.g., CIFAR-10), freeze parameters



How to define OOD scoring function?



Published as a conference paper at ICLR 2017

A BASELINE FOR DETECTING MISCLASSIFIED AND

OUT-OF-DISTRIBUTION EXAMPLES
IN NEURAL NETWORKS

A Simple Unified Framework for Detecting
Out-of-Distribution Samples and Adversarial Attacks

Published as a conference paper at ICLR 2018

Dan Hendrycks*
University of California, Berkeley
hendrycks@berkeley.edu

OUT-OF-DISTRIBUTION IMAGE DETECTION IN

ENHANCING THE RELIABILITY OF

Kimin Lee!, Kibok Lee?, Honglak Lee®2, Jinwoo Shin'*
1Korea Advanced Institute of Science and Technology (KAIST)

2University of Michigan
3Google Brain
4 Altrics

NEURAL NETWORKS

Shiyu Liang Yixuan Li
Coordinated Science Lab, Department of ECE University of Wisconsin-Madison
University of Illinois at Urbana-Champaign sharonli@cs.wisc.edu

sliang26@illinois.edu

R. Srikant

Coordinated Science Lab, Department of ECE
University of Illinois at Urbana-Champaign
rsrikant@illinois.edu

Out-of-Distribution Detection with Deep Nearest Neighbors

Yiyou Sun' Yifei Ming! Xiaojin Zhu'! Yixuan Li'

Abstract

Out-of-distribution (OOD) detection is a critical
task for deploying machine learning models in
the open world. Distance-based methods have
demonstrated promise, where testing samples are

ﬂg;gg;gﬂ as OOD if thev are relativelv far awav

A rich line of OOD detection algorithms has been devel-
oped recently, among which distance-based methods demon-
strated promise (Lee et al., 2018; Tack et al., 2020; Sehwag
et al., 2021). Distance-based methods leverage feature em-
beddings extracted from a model, and operate under the
assumption that the test OOD samples are relatively far

*

Energy-based Out-of-distribution Detection

Weitang Liu
Department of Computer Science and Engineering
University of California, San Diego
LaJolla, CA 92093, USA
wel022Qucsd.edu

John D. Owens
Department of Electrical and Computer Engineering
University of California, Davis
Davis, CA 95616, USA
jowens@ece.ucdavis.edu

Xiaoyun Wang
Department of Computer Science
University of California, Davis

Davis, CA 95616, USA
xiywang@ucdavis.edu

Yixuan Li
Department of Computer Sciences
University of Wisconsin-Madison

Madison, WI 53703, USA

sharonli@cs.wisc.edu




Tutorial Outline

 Inference-time OOD detection

e Distance-based methods

» Training-time regularization for OOD detection

e Safety-aware learning objective
e Synthesizing virtual outliers

® | everaging wild unlabeled data



A Simple Baseline

Frequency

J(x;0)

X Sogt'r(n;( ]?;:ore
’ out-of-distribution
Maximum Softmax

exp (fi(x)) orop

In-distribution

Hendycks et al., A Baseline for Detecting Misclassified and Out-of-distribution Samples in Neural Networks. ICLR 2017



A Simple Baseline

MSP can be non-distinguishable
between ID and OOD data

Frequency

in-distributioh (ID)

e 9
out-of-distribution (OOD) ;/ .

Maximum Softmax
/ o/ N\ Prob




Out-of-distribution Detection

Frequency

J(x;0)

out-of-distribution

X —> —5 | Energy Functionf in-distribution
E(x; 1)

threshold T

Negative Energy

. 0 if —Ex;f) <,
g(x;7, f) = .
| o | L if —Ex; f) >
Liu et al., Energy-based Out-of-distribution Detection, NeurIPS 2020



Energy-based Moael

Energy can be turned into probability through Gibbs distribution:

—E(x,y)/T —E(x,y)/T

€ €

ply | x) = fy, e—E(x,y")/T  ¢—E(x)/T




Energy-based Moael

Energy can be turned into probability through Gibbs distribution:

e—E(x,y)/T e—E(x,y)/T

p(y | x) = [ e EGw)/T ~ —EBEX)/T

Free energy can be expressed as the negative of the log partition function:

E(x)=-T- log/ e~ ECy)/T
y/



Energy-based Interpretation of Classification Model

J(x;0)

hix) softmax
X— hx) ———*

£,(x)

p(y|x)

E(x,y) = — (%)
ef’y (X)/T e_E(xay)/T

PWIX) = KK o P12 = T =B/



Energy-based Interpretation of Classification Model

J(x;0)
hix) softmax
X— hx) ———*
£,(x)

p(y|x)

Free energy can be expressed as the negative of the LogSumEXxp:

E(x) = —T - log / e Exy)/T

y/

input  Neural nets



J(x;0)

Out-of-distribution Detection

Frequency

out-of-distribution

_E> Energy Function E_, in-distribution
: E(x; 1) :

Negative Energy
threshold T

0 if —Ex;f) <,

9(x;7, f) = {1 o _ E(X; >



Softmax vs. energy scores

Frequency

f (x’g) out-of-distribution
_E> Energy Function E_, in-distribution
: E(x; 1) :
fy(x;60)
p(y|x) — p(x’ y) _ e’ threshold T

E(x;6) := 1ng efk(x 0)

Energy function has an inherent connection to the log likelihood
(but not identical — will come back to this).

Negative Energy



Softmax vs. energy SCores wmm» . pmmz-
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More Results

o Softmax score

I Energy score (ours)




Tutorial Outline

 Inference-time OOD detection

e Output-based methods

» Training-time regularization for OOD detection

e Safety-aware learning objective
e Synthesizing virtual outliers

® | everaging wild unlabeled data



Mahalanobis distance (parametric)

ldea: Model the feature space as a mixture of multivariate Gaussian distribution, one
for each class. Use distance to the closest centroid as a proxy for OOD measure.

X * Jest input

Penultimate layer

M(f,x) = max —(x — p;) X7 (x — pi)

1

Lee et al., A simple unified framework for detect.z:};é-‘O‘ut-oﬁdistribution samples and adversarial attacks. NeurlPS 2018



Mahalanobis distance (parametric)

Limitations:

(1) strong distributional assumption (features may not
necessarily be Gaussian-distributed)
(2) Suboptimal embedding

0.8

ID (10 Classes in CIFAR-10) ID (CIFAR-10) OOD
- I L .



Nearest Neighbor Distance (non-parametric)

Limitations of Maha distance:

(1) strong distributional assumption
(2) Suboptimal embedding

*m
x.',a | w

ID (10 Classes in CIFAR-10) ID (CIFAR-10)  OOQOD (LSUN)
. -

Sun et al., Qut-of-distribution Detection with Deep Nearest Neighbors, ICML 2022



CIDER

Learning optimal hyper-spherical embeddings for OOD detection

pd(z; K, K,) — Zd(K’) exXp (F':u'c Z) )

Penultimate Hyperspherical

Layer Embedding
% Class prototype

® Embedding of an instance
«— Instance-to-prototype attraction
(from Compactness 10sS Loomp )

<«-% Prototype-to-prototype dispersion
(from Dispersion loss Lais )

Augmented Projection
inputs Head

Ming et al., How to Exploit Hyperspherical Embeddings for Qut-of-Distribution Detection? ICLR 2023



CIFAR-10
p “(ID class prototype)
. CIFAR-100
& L 67.2° B ..(hard OO0D samples)
| | N e CIFAR-10
J:' """"""""" .(ID class prototype)
- CIFAR-10 (ID)
& - '
B N %,
. | CIFAR-100
& ..: - B . (hard OOD)
el oo, @ CIFAR-10 (ID)
(b) ID & OOD of CE (top)
(a) ID embeddings of CE (left) and CIDER (right) and CIDER (down)
OOD Dataset
viethos SVHN Places365 LSUN iSUN Texture VG FPRIS
SupCon+KNN (KNN+) 39.23 80.74 4899 7499 57.15 60.22
CIDER+KNN 23.09 79.63 16.16 71.68 43.87 46.89

Ming et al., How to Exploit Hyperspherical Embeddings for Out-of-Distribution Detection? ICLR 2023



Scoring function is only part of the solution...



Mitigating OOD Risk Requires Rethinking
Learning Algorithm Design



Tutorial Outline

 Inference-time OOD detection

e Output-based methods

¢ Distance-based methods

 Training-time regularization for OOD detection

e Safety-aware learning objective
e Synthesizing virtual outliers

® | everaging wild unlabeled data



Insufficiency of ERM

- EXxisting learning algorithms are primarily driven by optimizing accuracy only
on the |D data, but do not account for uncertainty from outside |D data.

High ID score

In-distribution Data

Class 3

trained using standard CE loss
(not ideal)

-

SCOTe

Low |
Uncertainty estimates of model

Empirical risk minimization:

Rclosed(f) — % Z?:l g(f(xz)a yz)
f* — argminfe}“Rclosed(f)z



Going beyond ERM

- We need training-time regularization that explicitly accounts tor uncertainty
outside |ID data.

High ID score High ID score

- In-distribution Data - In-distribution Data

»

(Not ideal)

Low ID score Low ID score

(Ideal)




Safety-aware learning objective

Dual objectives in learning (ID classification and OOD detection):

argmin [ Rclosed(f ) +— Q- Ropen (g ) ]

Classification error on ID Error of OOD detector



Safety-aware learning objective

Dual objectives in learning (ID classification and OOD detection):

al‘gmin [ Rclosed(f ) +— Q- Ropen (g ) ]

Classification error on ID Error of OOD detector



argmin [ Rclosed(f ) + - Ropen (g ) ]

Classification error on ID Error of OOD detector

Fopen (9 )

OOD: pushes down ID: pulls up score > 0
score < () ' '

Recall that:

B p(x’ y) B efy(x;e)
p(y\x) — 43 efr(x;0]

E(x;0) := —log fozl efr(%:0)

Negative energy score



Training-time Regularization Improves ID/OOD Separability

0.35- : ) :

251 in-distribution (CIFAR-10) | 0,30 in-distribution (CIFAR-10) : 0.35 i in-distribution (CIFAR-10) :
20 out-of-distribution (SVHN) = ' out-of-distribution (SVHN) E 0.30 a out-of-distribution (SVHN) E
Q:f '! >0.25 : 50.25| .
€ 15 | E020 5020 | :
g | 8"0 15 o " | I
= 101 | e - é 0.15 | :
]1 O . 10 1 E O . 10 | || \'\,‘l E

30 02 04 06 08 095 50 75 100125 150 17.5 200+ 0005 5 30 10
Softmax score (pretrained) Energy score (pretrained) : Energy score fine-tuning :

(a) FPROS: 48.87 (b) FPR9S5: 35.68 (d) FPR95: 1.18

Caveat: requires auxiliary outlier training data, which can be difficult to obtain



How to obtain auxiliary OOD training data, for free?



Tutorial Outline

 Inference-time OOD detection

e Output-based methods

e Distance-based methods

» Training-time regularization for OOD detection

e Safety-aware learning objective

® | everaging wild unlabeled data



Sample low-likelihood data points in the feature space for model regularization

Du et al., VOS: Learning What You Don’t Know by Virtual Outlier Synthesis, |ICLR, 2022



Sample low-likelihood data points in the feature space for model regularization

Modeling feature representation as class-conditional Gaussian distribution

h(x; 0) po(h(x,b)|ly = k) = N (g, X)

Du et al., VOS: Learning What You Don’t Know by Virtual Outlier Synthesis, |ICLR, 2022



Sample low-likelihood data points in the feature space for model regularization

Sample virtual outliers from the class-conditional Gaussian distribution

1 1 T ~
Vi = {vi] - exp (—é(vk — pk)TZ 1(Vk — Mk:)) < €}

Du et al., VOS: Learning What You Don’t Know by Virtual Outlier Synthesis, |ICLR, 2022



Sample low-likelihood data points in the feature space for model regularization

Sampling for each class-conditional distribution

.““,-----.....’ ‘ . .
I I — ---——--------==zr (Generated Virtual Outliers v
feg ® 0°0 _ T mer”T [ e, A
: . . AR ’ o* S
‘E o ® ¢ o0 . = A A
e % e - A
‘ --:"‘ “‘¢ A-‘“
¢ - A~ A
- “m A A A

Du et al., VOS: Learning What You Don’t Know by Virtual Outlier Synthesis, |ICLR, 2022



Sample low-likelihood data points in the feature space for model regularization

Calculate model output & energy score for virtual outliers
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Du et al., VOS: Learning What You Don’t Know by Virtual Outlier Synthesis, |ICLR, 2022



Our learning framework jointly optimizes for both: (1) accurate classification of
samples from 1D, and (2) reliable detection of data from outside 1D.

al‘gmin [ Rclosed(f ) + o R()pen (g ) ]

Classification error on ID Error of OOD detector

Ropen(g) = Eyy 1{E(v;0) > 0} + Ex~p 1{E(x;6) <0}

Du et al., VOS: Learning What You Don't Know by Virtual Outlier Synthesis, ICLR, 2022



Virtual Outlier Synthesis for Object Detection

Backbone Network
/
A
L
A

-

~N

Regression Head Lioc
\_ Y,
ﬁD Samples h(x, b) Classification Hea
oo At Linear ,
—> ® A A‘ > T f . £CIS
Anchor/Proposal : ranstormation R —_
Generator l lUncertainty score [ OOD
. C L Density
Virtual Logistic
Outliersv Regression i
~ uncertainty ,
~~~~~~~~ / Negative Energy Score
-z G_g:neArated Virtual Outliers
NGRS
| AA A A A
Aia LA A
=k ) - N ("Lkza Z) / -

VOS Is a general learning framework that is suitable for both object detection and

image classification tasks.



Results

Without VOS
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NON-PARAMETRIC OUTLIER SYNTHESIS

Anonymous authors
Paper under double-blind review

ABSTRACT

Out-of-distribution (OOD) detection is indispensable for safely deploying ma-
chine learning models in the wild. One of the key challenges 1s that models lack
supervision signals from unknown data, and as a result, can produce overconfi-
dent predictions on OOD data. Recent work on outlier synthesis modeled the fea-
ture space as parametric Gaussian distribution, a strong and restrictive assumption
that might not hold in reality. In this paper, we propose a novel framework, non-
parametric outlier synthesis (NPOS), which generates artificial OOD training data
and facilitates learning a reliable decision boundary between ID and OOD data.
Importantly, our proposed synthesis approach does not make any distributional as-
sumption on the ID embeddings, thereby offering strong flexibility and generality.
We show that our synthesis approach can be mathematically interpreted as a re-
jection sampling framework. Extensive experiments show that NPOS can achieve
superior OOD detection performance, outperforming the competitive rivals by a
significant margin.

I — D
Tao et al., Non-Parametric Outlier Synthesis, ICLR, 2023




Non-Parametric Outlier Synthesis

(a) ID embeddings (b) Boundary samples  (c) Non-parametric outlier synthesis ~ ID samples .
Synthesized outliers

Ropen(9)

separates ID vs. synthesized outliers

Sampling virtual outliers without making distributional assumption about
feature embedding. Strong generality and flexibility.



How to obtain natural outlier training data, for free?



Tutorial Outline

 Inference-time OOD detection

e Output-based methods

e Distance-based methods

» Training-time regularization for OOD detection

e Safety-aware learning objective

e Synthesizing virtual outliers



Leveraging Wild Unlabeled Data for OOD Detection

pedestrian  bicycle = Deploy model in the wild



Leveraging Wild Unlabeled Data for OOD Detection

i L s B

car truck car truck

pedestrian bicycle  Deploy model in the wild pedestrian bicycle

Advantages: (1) data 1s available in abundance, (2) does not require any
human annotation, and (3) 1s often a much better match to the true test time
distribution than data collected offline.



Leveraging Wild Unlabeled Data for OOD Detection

i i

(e k(@) (e k(@
car truck car truck

X &b > X &6

pedestrian bicycle  Deploy model in the wild pedestrian bicycle

Challenges: Wild data 1s not pure, and consists of both ID data and OOD data

Pwild — (]. — W)Pin + TPy



Training OOD Detectors in their Natural Habitats

Julian Katz-Samuels “! Julia Nakhleh “? Robert Nowak> Yixuan Li?

Abstract
S o Unknown-Aware Object Detection:
Out-of-distribution (OOD) detection is important Learning What You Don’t Know from Videos in the Wild
for machine learning models deployed in the wild.

Recent methods use auxiliary outlier data to reg- . . . .
larize th del for ; 4 OOD detect; Xuefeng Du', Xin Wang?, Gabriel Gozum?, and Yixuan Li!
ularize the model 101 1mprove ClecUos 1University of Wisconsin-Madison, 2Microsoft Research

— {xfdu, sharonli}@cs.wisc.edu, wanxin@microsoft.com, ggozum@wisc.edu

Abstract
! = ._ede’strian 98% =
Building reliable object detectors that can detect out- e : 1;p( A3 | R

of-distribution (OOD) objects is critical yet underex-
plored. One of the key challenges is that models lack ‘
(a) Overconfident Predictions (b) Unknwn objects in videos

supervision signals from unknown data, producing over-
confident predictions on OOD objects. We propose a

new unknown-aware object detection framework through Figure 1. (a) Vanilla object detectors can predict OOD objects
Spatial-Temporal Unknown Distillation (STUD), which dis- (e.g., deer) as an ID class (e.g., pedestrian) with high confidence.

[1] Katz-Samuels et al,, Training OOD Detectors in their Natural Habitats, ICML 2022
|2] Du et al., Unknown-Aware Object Detection: Learning What You Don’t Know from Videos in the Wild, CVPR 2022
|3] Bai et al., Feed Two Birds with One Scone: Exploiting Wild Data for Both OOD Generalization and Detection, ICML 2023




Summary

 Inference-time OOD detection

e Output-based methods

e Distance-based methods

» Training-time regularization for OOD detection

e Safety-aware learning objective
e Synthesizing virtual outliers

® | everaging wild unlabeled data
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Thank you!

sharonli@cs.wisc.edu
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