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Main Perception Tasks for Autonomous Driving
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Image Semantic Segmentation Depth Estimation

Motion Prediction

Object TrackingLiDAR Semantic Segmentation3D Object Detection



Perception with Neural Networks
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ImageNet Classification
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Image Classification on ImageNet



ImageNet Classification
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Image Classification on ImageNet



Semantic Segmentation on Cityscapes Dataset
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Semantic Segmentation on Cityscapes
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Have we solved all 
perception tasks?



Semantic Segmentation: training and validation
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Dataset Bias or Domain Discrepancy 
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Clear weather Rain
Physics-Based Rendering for Improving Robustness to Rain, Halder, Lalonde, and Charette, ICCV 2019



Dataset Bias or Domain Discrepancy 
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Nighttime Image

Map-Guided Curriculum Domain Adaptation and Uncertainty-Aware Evaluation for Semantic Nighttime 
Image Segmentation, Sakaridis, Dai, Van Gool, T-PAMI, 2020

Human Annotation Prediction
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1. Unsupervised Domain Adaptation: Learning Target Distribution with Unlabeled Samples

What can we do to generalize?



UDA in Semantic Segmentation
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● A general UDA pipeline in segmentation



UDA in Semantic Segmentation
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● Supervised training on source



UDA in Semantic Segmentation
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● Different UDA techniques ~ different UDA losses



Adversarial UDA framework in Segmentation

FCNs in the Wild: Pixel-level Adversarial and Constraint-based Adaptation, Hoffman et al. ICLR’17
Learning to Adapt Structured Output Space for Semantic Segmentation, Tsai et al. CVPR’18
ADVENT: Adversarial Entropy Minimization for Domain Adaptation in Semantic Segmentation, Vu et al. CVPR’19
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ADVENT: adversarial UDA + entropy minimization
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ADVENT: Adversarial Entropy Minimization for Domain Adaptation in Semantic Segmentation, Vu et al. CVPR’19



ADVENT: Adversarial Entropy Minimization for Domain Adaptation in Semantic Segmentation, Vu et al. CVPR’19
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ADVENT
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What did we learn?
● Adversarial training is great but difficult to train

● Self-training with entropy minimization works

▶ Similar finding in other works

▶ Self-training with pseudo-labelling

▶ High-scoring predictions

▶ Training with noisy labels

Unsupervised domain adaptation for semantic segmentation via class balanced self-training, Zou et al. ECCV’18
Bidirectional Learning for Domain Adaptation of Semantic Segmentation, Li et al., CVPR’19
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Self-training for UDA
● ESL: Entropy-based criterion for pseudo-labelling

▶ Low-entropy predictions as pseudo-labels

● ConDA: learnable confidence network for semantic failure detection
▶ High confidence predictions as pseudo-labels

ESL: Entropy-guided Self-supervised Learning for Domain Adaptation in Semantic 
Segmentation, Saporta et al., CVPRW’2020 Confidence Estimation via Auxiliary Models, Corbiere et al., TPAMI’2021
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Self-training for UDA
● ESL: Entropy-based criterion for pseudo-labelling

▶ Low-entropy predictions as pseudo-labels

● ConDA: learnable confidence network for semantic failure detection
▶ High confidence predictions as pseudo-labels
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Self-training for UDA
● Other self-training strategies:

○ Prototype-based pseudo-labelling: CAG_UDA [Zheng et al. NeurIPS’19], ProDA [Zhang et al. CVPR’21]

○ Inspired by the success of prototype-based approach to deal with noisy data [Han et al. ICCV’19]

○ Prototypes treat different classes equally regardless of their occurrence frequency
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What is missing?

SOTA methods still use “out-dated” network architectures and 
“low-res” input images
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Transformer for UDA
DAFormer: Improving Network Architectures and Training Strategies for 
Domain-Adaptive Semantic Segmentation”, Hoyer, Dai, and Van Gool, CVPR 2022

HRDA: Context-Aware High-Resolution Domain-Adaptive Semantic Segmentation”, 
Hoyer, Dai, and Van Gool, ECCV 2022

● Harness the robustness of SegFormer [Xie et al. NeurIPS 2021]

 

● Enable learning high-reso details and low-reso context at 
the same time
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Transformer for UDA - DAFormer

DAFormer: Improving Network Architectures and Training Strategies for Domain-Adaptive Semantic Segmentation”, Hoyer, Dai, and Van Gool, CVPR 2022
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Transformer for UDA - HRDA

HRDA: Context-Aware High-Resolution Domain-Adaptive Semantic Segmentation”, Hoyer, Dai, and Van Gool, ECCV 2022



SoTA in 2023
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MIC: Masked Image Consistency for Context-Enhanced Domain Adaptation, Hoyer CVPR’23 



SoTA in 2023
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MIC: Masked Image Consistency for Context-Enhanced Domain Adaptation, Hoyer CVPR’23 
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What did we learn?
● Self-training

● Robust encoder architecture, e.g. SegFormer

● High-resolution recognition, e.g. HRDA
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1. Unsupervised Domain Adaptation: Learning Target Distribution with Unlabeled Samples

2. Test-time Adaptation: Learning Target Distribution at Test Time from a Single Sample 

What can we do to generalize?
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Continual Test-Time Domain Adaptation

Continual Test-Time Domain Adaptation, Wang, Fink, Van Gool, Dai, CVPR, 2022.
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Continual Test-Time Domain Adaptation

Continual Test-Time Domain Adaptation, Wang, Fink, Van Gool, Dai, CVPR, 2022.

● Self-training with (better) predictions by a 
teacher network

● Self-training with (better) 
Augmentation-Averaged Pseudo-Labels

● Stochastic Weights Restoration to avoid 
catastic forgetting  
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Continual Test-Time Domain Adaptation

Continual Test-Time Domain Adaptation, Wang, Fink, Van Gool, Dai, CVPR, 2022.
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Continual Test-Time Domain Adaptation

Continual Test-Time Domain Adaptation for Monocular Depth Estimation, Li, Shi, Bernt, Dai, ICRA 2023
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1. Unsupervised Domain Adaptation: Learning Target Distribution with Unlabeled Samples

2. Test-time Adaptation: Learning Target Distribution at Test Time from a Single Sample 

3. Zero-shot Adaptation: Learning Target Distribution with Text Prompt

What can we do to generalize?



2022 - Foundation Models
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Image 
Encoder

Multi Modal 
Space

Language 
Encoder

Driver 
stopping at 
pedestrian 

crossing

Language spaceImage space

Multimodal Foundation Models
∎ Vision-Language Models - VLM: CLIP / BLIP / ALIGN



Prompt-driven Zero-shot Domain Adaptation

36

Harness foundation models for DA?

PØDA: Prompt-driven Zero-shot Domain Adaptation, Fahes et al. ICCV’23



Prompt-driven Zero-shot Domain Adaptation
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Harness foundation models for DA?

PØDA: Prompt-driven Zero-shot Domain Adaptation, Fahes et al. ICCV’23



Prompt-driven Zero-shot Domain Adaptation
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PØDA: Prompt-driven Zero-shot Domain Adaptation, Fahes et al. ICCV’23

Prompt-driven Instance Normalization (PIN)

● Stylize features using prompts

● Preserve semantics



Prompt-driven Zero-shot Domain Adaptation
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Prompt-driven Instance Normalization (PIN)

● Stylize features using prompts

● Preserve semantics

[21] Huang, X. and Belongie, S., Arbitrary Style Transfer in Real-time with Adaptive Instance Normalization. ICCV 2017



Prompt-driven Zero-shot Domain Adaptation
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PØDA: Prompt-driven Zero-shot Domain Adaptation, Fahes et al. ICCV’23

Prompt-driven Instance Normalization (PIN)

● Stylize features using prompts

● Preserve semantics



Prompt-driven Zero-shot Domain Adaptation
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PØDA: Prompt-driven Zero-shot Domain Adaptation, Fahes et al. ICCV’23



Prompt-driven Zero-shot Domain Adaptation
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PØDA: Prompt-driven Zero-shot Domain Adaptation, Fahes et al. ICCV’23



Prompt-driven Zero-shot Domain Adaptation
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Prompt-driven Zero-shot Domain Adaptation
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Prompt-driven Zero-shot Domain Adaptation
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Poster on Friday
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What else can we do to advance?
1. Unsupervised Domain Adaptation: Learning Target Distribution with Unlabeled Samples

2. Test-time Adaptation: Learning Target Distribution at Test Time from a Single Sample 

3. Zero-shot Adaptation: Learning Target Distribution with Text Prompt

4. Data Synthesis: Simulate Target Distribution via Physics-Based Model 
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Data synthesis

Semantic Foggy Scene Understanding with Synthetic Data, Sakaridis, Dai, and Van Gool, IJCV, 2018
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What else can we do to advance?
1. Unsupervised Domain Adaptation: Learning Target Distribution with Unlabeled Samples

2. Test-time Adaptation: Learning Target Distribution at Test Time from a Single Sample 

3. Zero-shot Adaptation: Learning Target Distribution with Text Prompt

4. Data Synthesis: Simulate Target Distribution via Physics-Based Model 

5. Robustness Benchmark



BRAVO Challenge
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A unified robustness benchmark for vision perception in 
autonomous driving

● Semantic segmentation

● Two tracks: single- and 

multi-domain training

● 3,901 images

● 7 metrics for a comprehensive 

assessment

● 6 assessment modalities on 

the test datasets
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Thank you!


