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We will focus today just on the Orange blocks.
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Bayesian approach and DNN

The Goal of DNN is to find P(Y |X ,ω). In the classic Bayesian approach
we find ω such that we have the maximum a posteriori (MAP).

ω = argmax
ω

logP(ω|D)

ω = argmax
ω

logP(D|ω) + logP(ω)

This leads to l2 regularization.
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Bayesian DNN [17]

Bayesian DNN is based on marginalization instead of MAP optimization.

P(Y |X ) = Eω∼P(ω|D) (P(Y |X ,ω))

P(Y |X ) =

∫
P(Y |X ,ω)P(ω|D)dω

In practice:

P(Y |X ) ≃
∑
i

(P(Y |X ,ωi )) with ωi ∼ P(ω|D)

Different techniques to estimate P(ω|D) .
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Posterior and ensemble [21]

Figure: Top: p(ω|D), with representations from VI (orange) deep ensembles
(blue), a multiBNN(red). Middle p(y |x ,ω)[15]
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Symmetries impact posterior visualization

Most successful deep learning uncertainty quantification methods – Deep
Ensembles, SWA(G), Laplace, Monte-Carlo Dropout, etc – seek to
approximate the Bayesian posterior via marginalization over the weights:

However, in modern deep neural networks, there exists a large or infinite
number of corresponding weight configurations:
⇀Scaling the weights by sequences of coefficients and their inverse leaves
the function unchanged
⇀ Reordering the weights using sequences of permutation matrices and
their inverse does not change the function & others

⇀ Symmetries impact optimization, and generalization via the loss
landscape.

⇀ What is the impact of symmetries on Bayesian posteriors and their
estimation by uncertainty quantification methods? 11 / 63
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Symmetries impact posterior visualization

Figure: Weight-space symmetries impact the estimated Bayesian posterior.
Permutation symmetries clearly increase the number of modes of the posterior
distribution in the case of the last layer of a 2-hidden neuron perceptron.
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Contributions

1 Express the theoretical impact of perm./scale symmetries on the
posterior

2 Evaluate & discuss the impact of symmetries on UQ methods
3 The min. of the weight decay on scaling symmetries has a unique

solution.
4 ”Checkpoints”: dataset of medium-sized independently trained

models
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Comparing the estimations of the posterior

Method MMD / D MMD / H NS / D NS / H Acc ↑ ECE ↓ ACE ↓ Brier ↓ AUPR ↑ FPR95 ↓ IDMI ↓ OODMI ↑

O
ne

M
od

e Dropout 5.7 5.5 5.7 5.4 89.9 2.0 7.3 14.7 64.9 81.6 7.8 5.0
BNN 8.4 6.7 8.5 6.6 88.0 20.0 10.3 19.9 78.1 38.6 0.1 0.3
SWAG 6.0 5.7 3.9 4.5 89.7 0.8 5.5 14.7 82.7 34.2 2.0 7.5
Laplace 5.5 4.9 6.6 5.4 90.4 5.5 7.1 15.1 79.8 42.8 1.1 4.5

M
ul

ti
M

od
e Dropout 0.7 2.7 0.7 2.6 93.7 2.3 2.7 9.7 91.0 26.4 11.5 70.7

BNN 2.8 2.8 2.9 2.7 92.7 2.4 3.3 11.3 83.2 31.7 15.6 58.2
SWAG 1.1 2.7 0.9 2.5 92.0 3.3 6.3 11.9 83.3 31.4 7.1 24.2
Laplace 0.5 3.6 2.2 2.6 92.7 2.0 2.5 9.4 90.5 24.1 12.0 61.2
HMC 2.3 0.0 2.2 0.0 90.3 5.7 8.1 15.0 90.0 23.7 29.7 90.5
DE 0.0 2.3 0.0 2.2 94.3 2.3 3.1 8.7 92.0 20.1 13.3 67.1

Table: Comparison of popular methods approximating the Bayesian posterior.
All scores are expressed in %, except for the ACEs, expressed in %. Acc stands
for accuracy, and IDMI and OODMI are in-distribution and out-of-distribution
mutual information. NS is the MMD computed after removing the symmetries,
and DE stands for Deep Ensembles. MMD / D and NS / D are the MMD and
NS computed with a target distribution based on DE and MMD / H and NS /
H are based on HMC. Multi-mode methods are based on ten independently
trained models except for HMC which is based on three independent chains.
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Code and dataset

Easy to download models & scripts:
1,024 ResNet-20 FRN/SiLU -
CIFAR-10
2,048 ResNet-18 - CIFAR-10
9,216 ResNet-18 - CIFAR-100
2,048 ResNet-18 - TinyImageNet Figure: QR code to the

dataset stored on HF.
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Ensemble Methods

Motivation for Ensemble Methods
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Ensemble Methods

Deep Ensembles [13]

Deep Ensembles

Idea: Deep Ensembles involves training multiple instances of the
same DNN model using the same training data.
Diversity: Contrary to Bagging and Boosting Deep Ensemble relies
on 3 sources of stochasticity:

Stochastic Optimisation
Random Initialisation
Non-deterministic backpropagation studied in [25]

Aggregation: Predictions are averaged.
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Ensemble Methods

Deep Ensembles [13]

They [13] propose to average the predictions of several DNNs with
different initial seeds:

P(y∗|x∗) = 1
Nmodel

Nmodel∑
j=1

P(y∗|ωj(t∗), x∗) (1)
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Ensemble Methods

Deep Ensembles [18]

Figure: t-SNE plot of predictions from checkpoints corresponding to 3 different
randomly initialized trajectorie
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Ensemble Methods

Deep Ensembles [18]

Figure: Results using SimpleCNN on CIFAR-10: t-SNE plots of validation set
predictions for each trajectory along with four different subspace generation
methods 20 / 63
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Ensemble Methods

Deep Ensembles [18]

Figure: Diversity versus accuracy plots for 3 models trained on CIFAR-10
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Ensemble Methods

Introduction to Dropout[10]

What is Dropout?

Definition: Dropout is a regularization technique used in neural
networks to prevent overfitting.
Idea: During training, randomly "drop out" (ignore) a fraction of
neurons, forcing the network to be more robust and preventing
reliance on specific neurons.
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Ensemble Methods

How Dropout Works[10]

Mechanism of Dropout

Training Phase: In each training iteration, random neurons are
dropped out with a specified probability.
Variability: Dropping out neurons introduces variability, making the
network less sensitive to the presence of any individual neuron.
Ensemble Effect: Dropout can be seen as training an ensemble of
multiple subnetworks, each missing different neurons.
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Ensemble Methods

Benefits and Considerations

Advantages and Considerations of Dropout

Regularization: Dropout helps prevent overfitting, improving the
model’s generalization to unseen data.
Ensemble Training: Provides an implicit way to train multiple
models simultaneously, enhancing robustness.
Hyperparameter: The dropout rate is a hyperparameter that needs
to be tuned based on the specific task and dataset.
Impact on Training Time: While dropout is beneficial during
training, it is typically turned off during inference.
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Ensemble Methods

MC dropout [12]

They [12] propose to average the predictions of several DNNs where they
apply the dropout:

P(y∗|x∗) = 1
Nmodel

Nmodel∑
j=1

P(y∗|ω(t∗)⊙ bj , x∗) (2)

with bj a vector of the same size of ω(t∗) which is a realization of a
binomial distribution.

25 / 63



Uncertainty Quantification in Deep Learning
Computationally-efficient BNNs for computer vision

Ensemble Methods

Overview of Light Ensemble Methods

Overview of Light Ensemble Methods

While Deep Ensemble is frequently considered state-of-the-art
(SOTA), it comes with significant computational demands.
Light Ensemble methods offer a faster alternative to achieve
comparable results.
Light Ensemble methods can be performed on a reduced dataset,
or/and with fewer neurons, or/and for a shorter duration.
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Ensemble Methods

BatchEnsemble Overview [22]

What is BatchEnsemble?
Definition: BatchEnsemble is an ensemble learning technique
designed for improving the performance and robustness of neural
networks.
Inspiration: Inspired by ensemble methods, BatchEnsemble extends
the concept to the batch dimension during training.

How BatchEnsemble Works
Batch-Level Ensembling: Instead of ensembling models across
different training runs, BatchEnsemble ensembles within the same
training batch.
Variability Across Batches: Introduces diversity by training
multiple instances of the model within each batch, enhancing
robustness.
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Ensemble Methods

BatchEnsemble Overview [22]

They [22] propose to approximate the average of the predictions of
several DNN with different initial seeds by using a DNN with two king of
weights. For simplicity is the ω has two set of weight ωslow , ωfast

For simplicity let us consider a DNN with just one fully connected layer
and let us write ω = {ωj}Nmodel

j=1 = {Wj}Nmodel
j=1 and ωslow = W and

ωslow = {Fj}Nmodel
j=1 . We have Wj = W · F = W · (rjstj )

Figure: An illustration on how to generate the ensemble weights for two
ensemble members
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Ensemble Methods

BatchEnsemble Overview [22]

We have a set of weight Wj = W · F = W · (rjstj ) with W that sees all
images and (rjs

t
j ) that does not see all the same images. If we denote ϕ

an activation function then when we apply the BatchEnsemble on an
image we perform:

y = ϕ
(
W t

j x
)
= ϕ

(
(W t · (rjstj ))tx

)
= ϕ

(
(W t(x · rj) · sj)

)
Similarly to Deep Ensembles, to perform inference we just perform
ensembling :

P(y∗|x∗) = 1
Nmodel

Nmodel∑
j=1

P(y∗|ωj , x
∗) (3)

Figure: An illustration on how to generate the ensemble weights for two
ensemble members
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Ensemble Methods

MIMO Overview [11]

What is MIMO?
Definition: MIMO stands for Multiple Input Multiple Output .
Objective: MIMO aims to utilize a single model’s capacity to train
multiple subnetworks that independently learn the task at hand.
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Ensemble Methods

Key Concepts of MIMO [11]

How MIMO Works
MIMO principle: The lottery ticket hypothesis shows that one can
prune away 70-80% of the connections in a DNN without adversely
affecting performance
MIMO Idea:The basic Idea is that a neural network has sufficient
capacity to fit 3-4 independent subnetworks simultaneously. Hence
they just need to modify the input and output to handle this 3-4
subnetworks.
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Ensemble Methods

Key Concepts of MIMO [11]

1 class MIMOModel(nn.Module):
2 def __init__(self, hidden_dim: int = 784, ensemble_num: int = 3):
3 super(MIMOModel, self).__init__()
4 self.input_layer = nn.Linear(hidden_dim, hidden_dim * ensemble_num)
5 self.backbone_model = BackboneModel(hidden_dim, ensemble_num)
6 self.ensemble_num = ensemble_num
7 self.output_layer = nn.Linear(128, 10 * ensemble_num)
8
9 def forward(self, input_tensor: torch.Tensor):

10 input_tensor = input_tensor.transpose(1, 0).view(
11 batch_size, self.ensemble_num, -1)
12 # (batch_size, ensemble_num, hidden_dim)
13 input_tensor = self.input_layer(input_tensor)
14 # (batch_size, ensemble_num, hidden_dim * ensemble_num)
15 # usual model forward
16 output = self.backbone_model(input_tensor) # (batch_size, ensemble_num,

128)↪→
17 output = self.output_layer(output) # (batch_size, ensemble_num, 10 *

ensemble_num)↪→
18 output = output.reshape(
19 batch_size, ensemble_num, -1, ensemble_num
20 ) # (batch_size, ensemble_num, 10, ensemble_num)
21 output = torch.diagonal(output, offset=0, dim1=1, dim2=3).transpose(2, 1)

# (batch_size, ensemble_num, 10)↪→
22 output = F.log_softmax(output, dim=-1) # (batch_size, ensemble_num, 10)
23 return output
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Ensemble Methods

Key Concepts of MIMO [11]

Figure: The multi-input multi-output (MIMO) configuration, the network takes
M = 3 inputs and gives M outputs [11]
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Ensemble Methods

Packed-Ensembles Overview [25]

Seamless training of ensembles with Packed-Ensembles

Definition: Packed-Ensembles estimate the posterior distributions
restraining their support to smaller networks in a computationally
efficient manner with grouped convolutions.
Objective: Get the benefits of deep ensembles with reduced costs.

Figure: Left: A standard network, Center: A deep ensembles, Right: The
corresponding Packed-Ensembles
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Ensemble Methods

How well does Packed-Ensembles perform? [25]

Performance of Packed-Ensembles
Performance: For sufficiently large networks, Packed-Ensembles is
equivalent to deep-ensembles in performance and UQ.
Computational efficiency: Use Packed-Ensembles with float16 to
benefit from grouped-convolutions better.
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Figure: Performance (accuracy) wrt. the image throughput
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Ensemble Methods

Sources of stochasticity in deep ensembles [25]

Figure: Impact of the three sources of stochasticity, non-deterministic backdrop.
kernels (ND), different initialization (DI), and different batches (DB).

Uncertainty-sources are equivalent!

No source of stochasticity during training seems to single out. Having
one source is sufficient, and adding more does not seem to affect the
performance or the quantitative functional diversity (Mutual information).
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Ensemble Methods

Key Takeaways

Summary of Insights

Understanding Sources: We explored various sources impacting
DNNs, acknowledging the inherent uncertainties.
Distinguishing Types: The distinction between aleatoric and
epistemic uncertainty provided clarity on different uncertainty
manifestations.
Quantification Techniques: We delved into diverse methods for
quantifying uncertainty in DNNs.
Evaluation Approaches: Different techniques for evaluating the
effectiveness of uncertainty quantification were discussed.

37 / 63



Uncertainty Quantification in Deep Learning
Computationally-efficient BNNs for computer vision

BNN Methods

Last Layer sampling [29]

Figure: Left: A standard network, Right: A Last Layer samplings DNN
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BNN Methods

Last Layer sampling [29]

Last Layer Sampling

Idea: Instead of estimation the posterior for the entire model, only
we estimate the posterior only for the last layer.
Benefits: Reduces computational cost and memory, while still
benefiting from ensemble-based uncertainty estimation.
Diversity: Each ensemble member has a unique final layer, leading
to diverse predictions while sharing common features from earlier
layers.
Aggregation: Predictions are averaged across the last layer
ensemble members, similar to full ensembles.
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BNN Methods

TRADI: a Bayesian DNN

W(0) W(t) W(t*)

Figure: TRADI uses Kalman filtering for tracking the distribution W of all
DNN weights across training steps from a generic prior W(0) to the final
estimate W(t∗).
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BNN Methods

TRADI: Mean State and Measurement Equations

Equations for the Mean µk(t)

µk(t) = µk(t − 1)− η∇Lωk (t) + εµ,

ωk(t) = µk(t) + ε̃µ,

εµ ∼ N (0, σ2
µ): State noise.

ε̃µ ∼ N (0, σ̃2
µ): Observation noise.
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BNN Methods

TRADI: Variance State and Measurement Equations

Equations for the Variance σ2
k(t)

σ2
k(t) = σ2

k(t − 1) +
(
η∇Lωk (t)

)2 − η2µk(t)
2 + εσ,

zk(t) = σ2
k(t)− µk(t)

2 + ε̃σ.

εσ ∼ N (0, σ2
σ): State noise.

ε̃σ ∼ N (0, σ̃2
σ): Observation noise.
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BNN Methods

TRADI: Comparison - Normal DNN vs Bayesian DNN

Normal DNN Bayesian DNN
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BNN Methods

TRADI: Sampling New Realizations of Weights

Weight Sampling Equation

ω̃(t∗) = µ(t∗) +Σ1/2(t∗)× m1,

where Σ is the covariance matrix, and m1 ∼ N (0K , IK ).

Prediction

P(y∗|x∗) = 1
Nmodel

Nmodel∑
j=1

P(y∗|ω̃j(t∗), x∗).

44 / 63



Uncertainty Quantification in Deep Learning
Computationally-efficient BNNs for computer vision

BNN Methods

TRADI: Efficient BNN Strategy

Key Idea

TRADI is a Bayesian Neural Network (BNN) strategy that tracks
the posterior distribution of the Deep Neural Network (DNN)
during training.

Benefits of TRADI
Lightweight Approach: Unlike traditional BNNs, TRADI does not
introduce heavy computational overhead.
Non-intrusive: It does not perturb the DNN training process,
allowing it to run as efficiently as a standard DNN.
Posterior Tracking: By monitoring the posterior, TRADI enhances
the uncertainty estimation while keeping the model’s original
structure intact.
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BNN Methods

How to estimate the Posterior of BNN?

Classical VI-BNN
Using the "reparametrization trick", a layer j of an MLP can be written:

uj = norm
([

W (j)
µ + ϵjW

(j)
σ

]
hj−1, βj , γj

)
, and

aj = a(uj),
(4)

where the matrices W
(j)
µ and W

(j)
σ denote the mean and standard

deviation of the posterior distribution of layer j , ϵj ∼ N (0,1) and the
operator norm(·, βj , γj), of trainable parameters βj and γj , can refer to
any batch, layer, or instance normalization.
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BNN Methods

How to turn a DNN into a BNN?

ABNN
Our objective differs from VI-BNN, which requires training the posterior
distribution parameters from scratch. Instead, our approach entails
leveraging and converting an existing DNN into a BNN.

1. Train a single model 3. Train ABNN2. Transform weights with ABNN

Figure: Illustration of the training process for the ABNN. The procedure
begins with training a single DNN ωMAP, followed by architectural adjustments
to transform it into an ABNN. The final step involves fine-tuning the ABNN
model.
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BNN Methods

Converting DNNs into BNNs

Post-hoc Bayesian Strategy

Base Strategy: Start with pre-trained DNNs with normalization
layers like Batch, Layer, or Instance normalization.
Bayesian Adaptation: Replace deterministic normalization layers
with Bayesian Normalization Layers (BNL) that add Gaussian
perturbation.
Goal: Efficiently convert pre-trained DNNs into Bayesian Neural
Networks (BNNs) with minimal modifications.
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BNN Methods

Bayesian Normalization Layer (BNL)

Transforming Normalization Layers

Key Equation:

uj = BNL
(
W (j)hj−1

)
, and aj = a(uj), with

BNL(hj) =
hj − µ̂j

σ̂j
× γj(1 + ϵj) + βj ,

where ϵj ∼ N (0,1)
Explanation: Gaussian perturbation is applied to normalization
layers to introduce stochasticity like gaussian dropout,
transforming deterministic layers into Bayesian layers.
Parameters: γj and βj are learnable vectors, retrained for a limited
number of epochs.
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BNN Methods

Training ABNN

Training Strategy

Process: - After replacing normalization layers with BNL, retrain
the parameters for a few epochs.
Multi-Modality: - Instead of training a single model, we train
multiple ABNNs, each with different weight configurations
ω1, . . . ,ωM .
Benefit: This approach helps in improving the generalization and
reliability of the BNN.
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BNN Methods

Inference in ABNN

Inference Strategy

Sampling from ABNN: - For each ABNN sample, multiple ϵj are
drawn independently from N (0,1).
Marginalization: The prediction for a new sample x is the expected
outcome from a finite ensemble of models and weight configurations:

P(y | x ,D) ≈ 1
ML

L∑
l=1

M∑
m=1

P(y | x ,ωm, ϵl).
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BNN Methods

Benefits of ABNN

Key Advantages

Uncertainty Estimation: BNNs provide a probabilistic
interpretation of model predictions.
Efficient Conversion: Pre-trained DNNs can be easily adapted into
BNNs with minimal retraining.
Scalability: The use of Bayesian Normalization Layers (BNL) allows
leveraging modern architectures like ResNet and Vision
Transformers.
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Conclusions

Advantages of Deep Ensembles

Ensembles allow sampling from different modes of the posterior
distribution, enhancing model diversity.
Each instance of the ensemble can capture distinct patterns, making
it robust to overfitting.
Averaging predictions across multiple models provides better
uncertainty estimates, especially for Out-of-Distribution (OOD)
detection.

Drawbacks of Deep Ensembles

Training multiple DNNs requires significant computational
resources, both in training and inference.
Inference is computationally heavy due to the need for combining
predictions from several models.
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Conclusions

Advantages of Light Ensembles

Light ensembles are faster to train and deploy, making them
computationally efficient.
However, they might suffer from lower performance, especially
compared to deep ensembles.

Drawbacks of Light Ensembles

Suitable for applications where speed is critical, but high model
performance is less important.
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Conclusions

Advantages of BNNs

BNNs have strong theoretical foundations, allowing them to
model uncertainty more formally.
In principle, BNNs approximate the posterior distribution of the
model weights.

Drawbacks of BNNs
Mode collapse: BNNs often collapse into a single mode, missing
out on multimodal distributions.
Training is computationally complex, especially for vision tasks,
making deployment more challenging.
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Next Steps: Implementation

Practical Application: Moving forward, we will explore practical
implementations of uncertainty quantification.

Link for the Practical Application: please visit the following link:

https://drive.google.com/file/d/
1GpeHCq5bQDEusUtYHroGNIXDNW4fKMf1/view?usp=sharing

Exploring Further

Contribute to Torch Uncertainty: If you are interested in advancing the
field, consider contributing to Torch Uncertainty.

https://github.com/ENSTA-U2IS-AI/torch-uncertainty

Explore Our Resources: Check out our curated list of resources on
Uncertainty, available at our "awesome" repository.

https:
//github.com/ENSTA-U2IS-AI/awesome-uncertainty-deeplearning
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