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Deep Learning

2

→ Successful at learning complex patterns from large data sets

Data                              , weights           , and model hyperparameters

A.8 EyePACS and APTOS Input Data Examples

(a) Original samples from the EyePACS Diabetic Retinopathy dataset [14].

(b) Processed and augmented samples from the EyePACS Diabetic Retinopathy
dataset, following the procedure of the Kaggle competition winner [14].

Figure 6: Illustrative examples of retina images in the original EyePACS dataset (top) and after preprocessing
(bottom).
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1Band, Rudner, …, Gal. Benchmarking Bayesian Deep Learning on Diabetic Retinopathy Detection Tasks. NeurIPS 2021.



Probabilistic View
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Deep Learning Workflow
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Part I: Bayesian Model 
Selection with Laplace
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Part II: Predictive 
Uncertainties with Laplace

+ epistemic uncertainty
+ heteroscedasticity



The Bayesian Approach
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MAP Bayesian

Likelihood Prior Marginal Likelihood
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Advantage 1) Bayesian Model Selection

Optimize marginal likelihood:
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Adapted from Rasmussen et al.

Datasets

too complex too simple“just right”

1Blumer, Ehrenfeucht, Haussler, Warmuth. Occam’s Razor. Information processing letters 1987.
2Rasmussen, Ghahramani: Occam’s Razor. NIPS 2001.

→ Occam’s razor: balance data-fit and model complexity1,2



Advantage 2) Predictive Uncertainty

Posterior predictive:
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→ Additionally provide epistemic uncertainty

Posterior



Aleatoric vs. Epistemic Uncertainty
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Potential definition of uncertainties as variance decomposition:

1Kwon, Won, Kim, Paik. Uncertainty Quantification using Bayesian Neural Networks in Classification. Computational Statistics & Data Science 2020.

Variance in labels for same input → aleatoric uncertainty

No similar input to     → epistemic uncertainty

aleatoric epistemic



Laplace Approximations
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Laplace Approximation

Hessian
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1) MargLik:

2) Posterior:

3) Predictive:

But: Hessian in O(P2) not tractable for Deep Learning

MAP

Posterior Laplace

1Laplace. Mémoire sur les probabilités. Mémoires de l'Académie royale des sciences de Paris 1778.
2MacKay. A practical Bayesian framework for backpropagation networks. Neural Computation 1992.



Efficient Hessian Approximations

Replace full O(P2) by structured positive-definite approximations O(P)1,2
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Full KFAC2,3 Diagonal

→ Tractable for extremely large models

1Ritter, Botev, Barber. A Scalable Laplace Approximation for Neural Networks. ICLR 2018.
2Martens, Grosse. Optimizing Neural Networks with Kronecker-factored Approximate Curvature. ICML 2015.

P

P

P

P

P

P

P2

P2



Efficient Hessian Approximations

Generalized Gauss-Newton (GGN) instead of Hessian:
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1

NN Jacobian O(PK) Log loss Hessian w.r.t.
NN output function O(K2)

→ Positive-semidefinite and reduced cost



Efficient Hessian Approximations

Decompositions and sampling for Jacobian-vector products:
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2

GGN

→ Reduce cost from O(PK) to O(P) and not require Jacobian

<latexit sha1_base64="2uZLZohfCEWKYN3a2/kjuSvt/yY="></latexit>
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Efficient Hessian Approximations

KFAC1 is a layer-wise block-diagonal structured approximation:
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3

Factors vary with layer type2
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1Martens, Grosse. Optimizing Neural Networks with Kronecker-factored Approximate Curvature. ICML 2015.
2Eschenhagen, Immer, Turner, Schneider, Hennig. Kronecker-Factored Approximate Curvature for Modern Neural Network Architectures. NeurIPS 2023.
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→ Reduce storage O(P2) to O(P) despite having off-diagonal entries!
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Part I: Bayesian Model Selection 
for Deep Learning
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Structured Laplace Approximations
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→ Theoretical justification for approximations

Structured Hessian approximations yield lower bounds to the Laplace marglik1:

Full Block-Diag
~KFAC
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Practical Bayesian Model Selection with Laplace
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Gradient-based Selection

Discrete Selection

Online Laplace approximation every F steps during training1:

1) Gradient-based optimization of differentiable

2) Comparison of models and checkpoints

→ Can optimize high-dimensional hyperparameters without re-training

1Immer, Bauer, Fortuin, Rätsch, Khan. Scalable Bayesian Model Selection for Deep Learning. ICML 2021.



Private & Confidential
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Example: Gradient-Based Model Selection
Optimize prior precision (regularization) with parameters in one training run

→ Validation-based selection requires many iterations



Private & Confidential

train test

→ Optimize thousands of regularization               
parameters in only 2x runtime

Compare test performance:
→ MargLik generalizes better

20

CIFAR-10 Classification

Compare train performance:
Standard vs MargLik

= regularization per layer 



Marginal Likelihood for Architecture Comparison
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architecture
= layer-wise prior precision,

→ Discrete selection possible after optimizing the prior



Examples of Bayesian Model Selection

22

• Regularization: weight decay/prior precision

• Selecting architecture, structure, variables

• Learning invariances/data augmentation

Zhou*, Yang*, Wang, Pan. BayesNAS: A Bayesian Approach for Neural Architecture Search. CVPR 2019.
van der Ouderaa, Immer, van der Wilk. Learning Layer-wise Equivariances Automatically using Gradients. NeurIPS 2023.
Bouchiat, Immer, Yeche, Rätsch, Fortuin. Improving Neural Additive Models with Bayesian Principles. ICML 2024.

van der Wilk, Bauer, John, Hensman. Learning Invariances using the Marginal Likelihood. NeurIPS 2018.
Immer*, van der Ouderaa*, Fortuin, Rätsch, van der Wilk. Invariance Learning in Deep Neural Networks […]. NeurIPS 2022.

Immer, Bauer, Fortuin, Rätsch, Khan. Scalable Bayesian Model Selection for Deep Learning. ICML 2021.
Antoran, Barbano, …, Jin. Uncertainty Estimation for Computed Tomography with a Linearised Deep Image Prior. TMLR 2023.
Dhahri, Immer, Charpentier, Günnemann, Fortuin. Shaving Weights with Occam's Razor. Preprint 2024.
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Figure 3: Learned
CONV+FC model.

Layers learn to become convolutional, except at the end of the network.

Upon further inspection of learned symmetries, we observe very high prior
precisions ��2

l >106 for non-equivariant paths in most layers, thus negligibly
contributing to final outputs (see App. D.1). We, therefore, conclude that layers
have learned to become convolutional from training data, which also explains
why training learned equivariance with Laplace performs on par with CONV
models in Table 2. We reach the same conclusions upon inspection of effective
dimensions [MacKay, 1992] in App. D.2 and visualise learned symmetries
based on the highest relative effective number of parameters in Fig. 3. If
layers did not become convolutional, this always occurred at the end of the
network. This is particularly interesting as it coincides with common practice
in literature. Spatial dimensions in the used architecture are halved through
pooling operations, reaching 1 with sufficient or global pooling, after which
features become strictly invariant and there is no difference anymore between
1x1 CONV and FC layers. Convolutional architectures in literature often flatten
features and apply FC layers before this point [LeCun et al., 1998], breaking
strict symmetry and allowing some dependence in the output on absolute
position. Our findings indicate that the method can discover such favourable
network designs automatically from data, outperforming regular MAP training. Furthermore, it shows
that not always the same layer is selected, but different layer types are learned on a per-layer basis.

6.3 Selecting symmetry from multiple groups

App. A generalises the proposed method to other symmetry groups, and App. B describes layer-wise
equivariance selection from a set of multiple symmetry groups or layer types. In this experiment, we
consider adding discrete 90-degree rotations to the architecture F-FC+CONV+GCONV. In Table 3,
we compare the test performance with MAP and approximated marginal likelihood training on
versions of MNIST and CIFAR-10 datasets (details in App. F.5). We compensate for the added
parameters resulting from the rotationally equivariant GCONV path by reducing channel sizes of
individual paths by a factor of 5 (↵=10 to ↵=2, see App. F). Still, we are able to obtain 80% test
accuracy on CIFAR-10 when trained with approximated marginal likelihood. Upon analysis of
learned prior variances (App. D.1) and effective number of parameters (App. D.2), we observe a
positive correlation between learned symmetries and augmentations applied to the datasets trained on.

MAP Learned with Differentiable Laplace (ours) Rel. Effective Num. of Param. ]
Dataset # Params Test NLL (#) Test accuracy (") Test NLL (#) Test accuracy (") Approx. MargLik (#) FC (%) CONV (%) GCONV (%)

MNIST 1.2 M 0.172 97.59 0.023 99.21 0.328 10 (0-46) 15 (0-98) 75 (1-100)
Translated MNIST 1.2 M 0.812 90.78 0.053 98.27 0.216 0 (0-0) 23 (0-99) 77 (1-100)

Rotated MNIST 1.2 M 0.819 91.02 0.136 95.55 0.896 8 (0-20) 8 (0-47) 83 (47-100)

CIFAR-10 1.2 M 3.540 68.33 0.552 80.94 0.926 0 (0-1) 44 (0-99) 56 (0-100)
Rotated CIFAR-10 1.2 M 5.953 48.30 1.236 55.68 1.630 4 (0-22) 14 (0-41) 82 (58-99)

Table 3: Selecting from multiple symmetry groups. Negative log likelihood (NNL) and Laplace
learned symmetries measured by mean (min-max) relative effective number of parameters over layers.

7 Discussion and Conclusion

This work proposes a method to automatically learn layer-wise equivariances in deep learning using
gradients from training data. This is a challenging task as it requires both flexible parameterisations of
symmetry structure and an objective that can learn symmetry constraints. We improve upon existing
parameterisations of relaxed equivariance to remain practical in the number of parameters. We learn
equivariances through Bayesian model selection, by specifying symmetries in the prior and learning
them by optimising marginal likelihood estimates. We derive Kronecker-factored approximations of
proposed layers to enable scalable Laplace approximations in deep neural networks.

The approach generalises symmetry groups and can be used to automatically determine the most
relevant symmetry group from a set of multiple groups. We rely on relaxing symmetries and learning
the amount of relaxation, where strict equivariance forms a limiting case. In doing so, the method
does require a list of symmetry groups and associated group representations that are considered, and
learns to ignore, partially use, or strictly obey symmetry constraints. Yet, we argue this is a huge step
forward compared to always using a single, strict symmetry. We hope that allowing artificial neural
networks to automatically adapt structure from training data helps to leverage existing geometry in
data better and reduce the reliance on trial-and-error in architecture design.

9



Limitations of Bayesian Model Selection

23

• Required probabilistic model

• Can still require manual tuning or validation

• No benefit on saturated benchmarks

ImageNet1

1https://paperswithcode.com/sota/image-classification-on-imagenet accessed on 18th Sept 2024.



Part 2: Predictive Uncertainties
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Laplace Posterior Predictive Underfitting

Problem: Laplace posterior predictive underfits1

25
1Lawrence. Variational Inference in Probabilistic Models. PhD Thesis 2001.

Improving predictions of Bayesian neural nets via local linearization

1 Data D and model

Model
f(x; w, b) = 5 tanh(wx + b)

p(y = 1|f) = �(f)

p(w) = p(b) = N (0, 1)

2 Posterior inference

p(w, b|D) p(w|D, b = bMAP)

true (HMC) approximate (Laplace-GGN)

3 Posterior predictive distribution

x

p(
y
|x

,D
)

BNN predictive

x

GLM predictive (ours)

x

HMC

Figure 3: The bnn predictive underfits because some samples can give extremely wrong predictions (an example
shown in orange, ). The glm predictive corrects this.
2 Laplace-ggn posterior ( ) vs. the true posterior ( ) through 105 HMC samples: the Laplace-ggn is
symmetric and extends beyond the true, skewed posterior with same MAP. We highlight two posterior samples,
one where both distributions have mass ( ) and another where only the Laplace-ggn has mass ( ).
3 Posterior predictives p(y|x, D). The bnn and glm predictive both use the same Laplace-ggn posterior;

while the proposed glm predictive closely resembles HMC (using the true posterior), the bnn predictive underfits.
Underfitting is due to samples from the mismatched region of the posteriors ( ); while the glm predictive
reasonably extrapolates the behaviour around the MAP, the bnn predictive behaves qualitatively different.

predictive means; innermost 50%/66% of samples.

tions to the covariance introduced in Sec. 2 (full, diag-
onal, or kfac). The full covariance case is given by:

⌃�1
ggn =

PN
n=1 J✓⇤(xn)T⇤(yn; fn)J✓⇤(xn) + S�1

0

(12)

with prior covariance S0. In our glm setting, this
corresponds to linearizing the original bnn around
✓⇤ = ✓MAP and using the same Laplace-ggn posterior.
For large-scale experiments we use this posterior as
it is simpler and computationally more feasible than
the refinement we describe next. Note that our main
contribution is to propose a different predictive (see
Sec. 3.3), not a different posterior.

We can use the glm perspective to refine the poste-
rior, because in practise we are only ever approximately
able to find ✓MAP of Eq. (3). We linearize the net-
work around its state after MAP training, ✓⇤ ⇡ ✓MAP,
and perform inference in the glm, which typically re-
sults in a posterior with mode different from ✓⇤. The
glm objective Eq. (11) is convex and therefore easier
to optimize and guarantees convergence. For general
likelihoods, posterior inference is still intractable and
we resort to Laplace and variational approximations
(see Sec. 2). Both lead to Gaussian posterior approx-

imations q(✓) to p(✓|D) ( in Fig. 2) and are com-
puted iteratively for general likelihoods, see e.g. Bishop
(2006, Chapter 4); for Gaussian likelihoods they can be
evaluated in a single step. On small-scale experiments
(Sec. 4.2) we found that refinement can improve perfor-
mance but at a higher computational cost; we discuss
computational constraints in Sec. 3.6. Nonetheless, the
refinement view allows us to consider the ggn approx-
imation separately from the Laplace approximation:
the ggn approximation linearizes the network around
✓⇤, whereas the Laplace approximation is only one of
several possible posterior approximations.

Remark 2. The ggn approximation should be treated

as an approximation to the model. It locally linearizes

the network features and is independent of posterior

inference approximations such as the Laplace approxi-

mation or variational inference.

3.3 The glm predictive distribution

To make predictions, we combine the approximate pos-
terior with the likelihood; the posterior is the Laplace-
ggn posterior or a refinement thereof. Previous works
have used the full network features in the likelihood

Improving predictions of Bayesian neural nets via local linearization

1 Data D and model

Model
f(x; w, b) = 5 tanh(wx + b)

p(y = 1|f) = �(f)

p(w) = p(b) = N (0, 1)

2 Posterior inference

p(w, b|D) p(w|D, b = bMAP)

true (HMC) approximate (Laplace-GGN)

3 Posterior predictive distribution

x

p(
y
|x

,D
)

BNN predictive

x

GLM predictive (ours)

x

HMC

Figure 3: The bnn predictive underfits because some samples can give extremely wrong predictions (an example
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2 Laplace-ggn posterior ( ) vs. the true posterior ( ) through 105 HMC samples: the Laplace-ggn is
symmetric and extends beyond the true, skewed posterior with same MAP. We highlight two posterior samples,
one where both distributions have mass ( ) and another where only the Laplace-ggn has mass ( ).
3 Posterior predictives p(y|x, D). The bnn and glm predictive both use the same Laplace-ggn posterior;

while the proposed glm predictive closely resembles HMC (using the true posterior), the bnn predictive underfits.
Underfitting is due to samples from the mismatched region of the posteriors ( ); while the glm predictive
reasonably extrapolates the behaviour around the MAP, the bnn predictive behaves qualitatively different.

predictive means; innermost 50%/66% of samples.

tions to the covariance introduced in Sec. 2 (full, diag-
onal, or kfac). The full covariance case is given by:

⌃�1
ggn =

PN
n=1 J✓⇤(xn)T⇤(yn; fn)J✓⇤(xn) + S�1

0

(12)

with prior covariance S0. In our glm setting, this
corresponds to linearizing the original bnn around
✓⇤ = ✓MAP and using the same Laplace-ggn posterior.
For large-scale experiments we use this posterior as
it is simpler and computationally more feasible than
the refinement we describe next. Note that our main
contribution is to propose a different predictive (see
Sec. 3.3), not a different posterior.

We can use the glm perspective to refine the poste-
rior, because in practise we are only ever approximately
able to find ✓MAP of Eq. (3). We linearize the net-
work around its state after MAP training, ✓⇤ ⇡ ✓MAP,
and perform inference in the glm, which typically re-
sults in a posterior with mode different from ✓⇤. The
glm objective Eq. (11) is convex and therefore easier
to optimize and guarantees convergence. For general
likelihoods, posterior inference is still intractable and
we resort to Laplace and variational approximations
(see Sec. 2). Both lead to Gaussian posterior approx-

imations q(✓) to p(✓|D) ( in Fig. 2) and are com-
puted iteratively for general likelihoods, see e.g. Bishop
(2006, Chapter 4); for Gaussian likelihoods they can be
evaluated in a single step. On small-scale experiments
(Sec. 4.2) we found that refinement can improve perfor-
mance but at a higher computational cost; we discuss
computational constraints in Sec. 3.6. Nonetheless, the
refinement view allows us to consider the ggn approx-
imation separately from the Laplace approximation:
the ggn approximation linearizes the network around
✓⇤, whereas the Laplace approximation is only one of
several possible posterior approximations.

Remark 2. The ggn approximation should be treated

as an approximation to the model. It locally linearizes

the network features and is independent of posterior

inference approximations such as the Laplace approxi-

mation or variational inference.

3.3 The glm predictive distribution

To make predictions, we combine the approximate pos-
terior with the likelihood; the posterior is the Laplace-
ggn posterior or a refinement thereof. Previous works
have used the full network features in the likelihood

HMCLaplace



Hessian approximations linearize implicitly2

We should keep this in mind for predictions:

Linearized Laplace

261Lawrence. Variational Inference in Probabilistic Models. PhD Thesis 2001.
2Bottou, Curtis, Nocedal. Optimization methods for large-scale machine learning. SIAM Review 2018.

→ Stabilizes and improves Laplace predictive



Linearized Model as a Gaussian Process
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Alexander Immer
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Q
i p(yn|f(xn, ✓))
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Q
n p(yn|fn)
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f✓
⇤

lin(x,✓) = f(x,✓⇤) + J✓⇤(x)(✓ � ✓⇤)

ggn
(Sec. 3.1)(Sec. 3.1)(Sec. 3.1)(Sec. 3.1)(Sec. 3.1)(Sec. 3.1)(Sec. 3.1)(Sec. 3.1)(Sec. 3.1)(Sec. 3.1)(Sec. 3.1)(Sec. 3.1)(Sec. 3.1)(Sec. 3.1)(Sec. 3.1)(Sec. 3.1)(Sec. 3.1)

weight/function

space view

(Sec. 3.5)

q(✓) = N (µ,⌃) q(f) = GP(mq(x),kq(x,x0))

Gaussian posterior approximation (Sec. 3.2)

Figure 2: The generalized Gauss Newton approximation (ggn) turns a Bayesian neural network (bnn) into
a generalized linear model (glm) with same prior and likelihood distribution, but network function f(xn, ✓)
linearized around ✓⇤ ( ). The glm is equivalent to a Gaussian process (gp) ( ). Inference is made
tractable with a Gaussian posterior approximation ( ), and we predict using the glm predictive (Eq. (13)).

Kronecker factored; the ggn of the l-th parameter
group is approximated as

hPN
n=1J✓(xn)T⇤(yn; fn)J✓(xn)

i

l
⇡ Ql ⌦ Wl, (8)

where Ql is the uncentered covariance of the activa-
tions and Wl is computed recursively (Botev et al.,
2017). Therefore, Ql is quadratic in the size of the in-
put and Wl in the output of the layer, and both are
positive semidefinite. Inversion of the Kronecker ap-
proximation is cheap because we only need to invert
its factors individually. The Kronecker approximation
can be combined with the prior exactly (Grosse and
Martens, 2016) or using dampening (Ritter et al., 2018).
We use the exact version, see App. A.1 for a discussion.

Posterior predictive. Regardless of the posterior
approximation, we usually obtain a predictive distri-
bution by integrating the approximate posterior q(✓)
against the model likelihood p(D|✓):

bnn predictive
pbnn(y|x, D) = Eq(✓) [p(y|f(x, ✓))]

⇡ 1
S

P
s p(y|f(x, ✓s)), ✓s ⇠ q(✓)

(9)

where we have approximated the (intractable) expec-
tation by Monte Carlo sampling. To distinguish this
predictive from our proposed method, we refer to Eq. (9)
as bnn predictive. Typically, the bnn predictive dis-
tribution is non-Gaussian, because the likelihood can
be non-Gaussian and/or f depends non-linearly on ✓s.

3 Methods

Here, we discuss the effects of the ggn approximation
in more detail (Sec. 3.1) and introduce our main con-
tributions, the glm predictive (Sec. 3.3) and its gp
counterpart (Sec. 3.5); see Fig. 2 for an overview.

3.1 Generalized Gauss-Newton turns bnns

into generalized linear models

In Sec. 2 we introduced the ggn as a positive semi-
definite approximation to the Hessian by simply drop-

ping the term H✓(x)Tr(y; f) in Eq. (7); in other words,
we assume that H✓(x)Tr(y; f) = 0. Two independently
sufficient conditions are commonly used as justification
(Bottou et al., 2018): (i) The residual vanishes for all
data points, r(y; f(x, ✓)) = 0 8(x,y), which is true if the
network is a perfect predictor. However, this is neither
desired, as it indicates overfitting, nor is it realistic. (ii)
The Hessian vanishes, H✓(x) = 0 8x, which is true for
linear networks and can be enforced by linearizing the
network. Hence, an alternative definition uses this sec-
ond condition as a starting point and defines the ggn
through the linearization of the network (Martens and
Sutskever, 2011).

In this work, we follow this alternative definition and
motivate the ggn approximation as a local lineariza-

tion of the network function f(x, ✓),

f✓
⇤

lin(x, ✓) = f(x, ✓⇤) + J✓⇤(x)(✓ � ✓⇤), (10)

at a parameter setting ✓⇤ ( in Fig. 2). This lineariza-
tion reduces the bnn to a Bayesian generalized linear
model (glm) with log joint distribution `glm(✓, D)

`glm(✓, D) =
PN

n=1 log p(yn|f✓⇤

lin(xn, ✓)) + log p(✓),
(11)

where f✓
⇤

lin(x, ✓) is linear in the parameters ✓ but not
in the inputs x. In practice, we often choose the lin-
earization point ✓⇤ to be the MAP estimate found by
optimization of Eq. (3). At ✓⇤ the ggn approxima-
tion to the Hessian of the linearized model, Eq. (11), is
identical to that of the full model, Eq. (3).

Remark 1. Applying the ggn approximation to the

likelihood Hessian turns the underlying probabilistic

model locally from a bnn into a glm.

3.2 Approximate inference in the glm

Previous works, e.g. Ritter et al. (2018) and Khan et
al. (2019), apply the Laplace and the ggn approx-
imation jointly. We refer to the resulting posterior
q(✓) = N (✓MAP,⌃ggn) as the “Laplace-ggn poste-
rior”, where ⌃ggn denotes one of the ggn approxima-

→ Enables different posterior approximation techniques

Immer, Korzepa, Bauer. Improving predictions of Bayesian neural nets via local linearization. AISTATS 2021.
Deng, Zhou, Zhu. Accelerated Linearized Laplace Approximation for Bayesian Deep Learning. NeurIPS 2022.



Laplace Posterior Predictive

28

• Last-layer is very cheap and effective baseline

• Laplace can improve ensembling further

• Linearized predictive can have a closed-form (approximation)

Eschenhagen, Daxberger, Hennig, Kristiadi. Mixtures of Laplace Approximations […]. BDL@NeurIPS 2021.

Immer, Korzepa, Bauer. Improving predictions of Bayesian neural nets via local linearization. AISTATS 2021.
Deng, Zhou, Zhu. Accelerated Linearized Laplace Approximation for Bayesian Deep Learning. NeurIPS 2022.

Kristiadi, Hein, Hennig. Being Bayesian, even just a bit, fixes overconfidence in relu networks. ICML 2020.
Ober, Rasmussen. Benchmarking the neural linear model for regression. AABI 2019.

Being Bayesian, Even Just a Bit, Fixes Overconfidence in ReLU Networks

0.5

0.6

0.7

0.8

0.9

1.0

(a) MAP (b) Temp. scaling (c) Bayesian (last-layer) (d) Bayesian (all-layer)
0.5

0.6

0.7

0.8

0.9

1.0

Figure 1. Binary classification on a toy dataset using a MAP estimate, temperature scaling, and both last-layer and all-layer Gaussian
approximations over the weights which are obtained via Laplace approximations. Background color and black line represent confidence
and decision boundary, respectively. Bottom row shows a zoomed-out view of the top row. The Bayesian approximations—even in the
last-layer case—give desirable uncertainty estimates: confident close to the training data and uncertain otherwise. MAP and temperature
scaling yield overconfident predictions. The optimal temperature is picked as in Guo et al. (2017).

to the last layer of a ReLU network. This motivates the
commonly used approximation scheme where an L-layer
network is decomposed into a fixed feature map composed
by the first L�1 layers and a Bayesian linear classifier (Gel-
man et al., 2008; Wilson et al., 2016a; Riquelme et al., 2018;
Ober & Rasmussen, 2019; Brosse et al., 2020, etc.). This
particular result implies that just being “a bit” Bayesian—at
low cost overhead—already gives desirable benefits.

We empirically validate our results through various Laplace
approximations on common deep ReLU networks. Further-
more, while our theoretical analysis is focused on the binary
classification case, we also experimentally show that these
Bayesian approaches yield good performance in the multi-
class classification setting, suggesting that our analysis may
carry over to this case.

To summarize, our contributions are three-fold:

(i) we provide theoretical analysis on why ReLU net-
works equipped with Gaussian distributions over the
weights mitigate the overconfidence problem in the
binary classification setting,

(ii) we show that a sufficient condition for having this
property is to be “a bit” Bayesian: employing a
last-layer Gaussian approximation—in particular a
Bayesian one, and

(iii) we validate our theoretical findings via a series of
comprehensive experiments involving commonly-used
deep ReLU networks and Laplace approximations in
both binary and multi-class cases.

Section 2 begins with definitions, assumptions, and the prob-
lem statement, then develops the main theoretical results.
Proofs are available in Appendix A. We discuss related work
in Section 3, while empirical results are shown in Section 4.

2. Analysis
2.1. Preliminaries

Definitions We call a function f : Rn ! Rk piecewise
affine if there exists a finite set of polytopes {Qr}Rr=1, re-
ferred to as the linear regions of f , such that [R

r=1Qr = Rn

and f |Qr is an affine function for every Qr. ReLU net-
works are networks that result in piecewise affine classifier
functions (Arora et al., 2018), which include networks with
fully-connected, convolutional, and residual layers where
just ReLU or leaky-ReLU are used as activation functions
and max or average pooling are used in convolution lay-
ers. Let D := {xi 2 Rn

, ti}mi=1 be a dataset, where the
targets are ti 2 {0, 1} or ti 2 {1, . . . , k} for the binary
and multi-class case, respectively. Let � : Rn ! Rd be
an arbitrary fixed feature map and write � := �(x) for
a given x. We define the logistic (sigmoid) function as
�(z) := 1/(1 + exp(�z)) for z 2 R and the softmax func-
tion as softmax(z, i) := exp(zi)/

P
j exp(zj) for z 2 Rk

and i 2 {1, . . . , k}. Given a neural network f✓ , we consider
the distribution p(✓|D) over its parameters. Note that even
though we use the notation p(✓|D), we do not require this
distribution to be a posterior distribution in the Bayesian
sense. The predictive distribution for the binary case is

p(y = 1|x,D) =

Z
�(f✓(x)) p(✓|D) d✓ , (1)



Limitations
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• Scalability issues in some cases1

• Linearization can be expensive2

• Post-hoc cannot fix badly trained network

1Kepf, Wanna, Miani, Moore, …, Warburg. Laplacian Segmentation Networks […]. MICCAI 2024.
2Antoran, Janz, Allingham, …, Hernandez-Lobato. Adapting the Linearised Laplace Model Evidence for Modern Deep Learning. ICML 2022.
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laplace-torch1 on github.com/AlexImmer/Laplace

1Daxberger*, Kristiadi*, Immer*, Eschenhagen*, Bauer, Hennig. Laplace Redux - Effortless Bayesian Deep Learning. NeurIPS 2021.
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Estimating Heteroscedastic Aleatoric Uncertainty

Model mean         and variance           of 
a Gaussian likelihood:

Objective balances mean and variance
→ Hard to optimize and regularize2,3

32
1Wessels, Mendez-Mancilla, …, Sanjana. Massively parallel Cas13 screens reveal principles for guide RNA design. Nature Biotechnology 2020.
2Stirn, Wessels, …, Knowles. Faithful Heteroscedastic Regression with Neural Networks. AISTATS 2023.
3Seitzer, Tavakoli, Antic, Martius. On the Pitfalls of Heteroscedastic Uncertainty Estimation with Probabilistic Neural Networks. ICLR 2022.
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Problem with Mean-Variance Parameterization

Mean-variance parameterization does not yield concave log likelihood:
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Can be positive or negative.
→ potentially indefinite Hessian
→ not concave

→ Cannot apply Hessian or Laplace approximations naively



Natural parameterization always yields a concave log likelihood1,2 with

→ Hessian and Laplace approximations straightforward

Revisiting the Natural Parameterization

341Le, Smola, Canu. Heteroscedastic Gaussian process regression. ICML 2005.
2Martens. New insights and perspectives on the natural gradient method. JMLR 2020.

→ Neural network models both natural parameters



Heteroscedastic Regression Illustration
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9.1. Introduction
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Figure 9.1: Illustration of the proposed training and posterior predictive of a heteroscedastic
Bayesian neural network (right) in comparison to a homoscedastic one (left).

Two recent strategies aim to adjust for this problem by reducing the influence of the
predictive variance on the gradient of the mean. In particular, Seitzer et al. [Sei+22]
introduce a surrogate loss, the —≠NLL loss, which regulates the influence of the variance
on the gradients of the loss by introducing a stop-gradient operation.

As an alternative solution, Stirn et al. [Sti+23] propose architectural constraints coupled
with two stop gradient operations, regularizing the heteroscedastic model such that its
mean fit is not compromised compared to a homoscedastic baseline. We provide more
details to both approaches in Sec. 9.2.

Our Contributions. In comparison to previous work on heteroscedastic regression with
neural networks, we take a di�erent perspective postulating that current estimators lack
principled regularization. While recent work aims at regularizing the influence of the
predictive variance, as we discuss in Sec. 9.2, we show that this focus can shift the problem
to compromising capacity for the variance estimate.

Instead, we propose three major modifications to tackle the problem of fitting heteroscedas-
tic neural networks: akin to previous work on GPs [LSC05], linear and small neural network
models [Imm+23c], we propose to re-parameterize the loss using the natural parameteriza-
tion (cf. Sec. 9.3) which is known to be jointly concave in both parameters. Empirically,
we find that this parameterization can be more stable during optimization. Further, we
derive an e�cient Laplace approximation to the marginal likelihood for heteroscedastic
regression that can automatically learn regularization via empirical Bayes and provide
an early-stopping signal to prevent overfitting without requiring a grid search based on
a validation set in Sec. 9.4.1 Additionally, the Laplace approximation provides epistemic

1DVI [Wu+19] also employs empirical Bayes regularization, but does only apply to MLPs.
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Immer, Palumbo, Marx, Vogt. Effective Bayesian Heteroscedastic Regression with Deep Neural Networks. NeurIPS 2023.
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Figure 9.3: Box-plots reporting test log likelihood results on the three CRISPR datasets
that vary with respect to cell and screen type. The natural parameterization and the
posterior predictive improve the performance. Note that NLL mean-variance (MAP) and
MC-Dropout markedly underperform in this context and are excluded from the figure.

achieves the best performance, while ties are the number of datasets in which the model
achieves results which are not statistically distinguishable from the best performing model.

The results validate the e�ectiveness of EB regularization on di�erent heteroscedastic loss
parameterizations. Notably, with the Bayesian posterior predictive (PP) our proposed
methods considerably improve in performance in comparison to using a point estimate, and
significantly outperform existing state-of-the-art approaches. Finally the results confirm
that, particularly when the point predictive is used, using the natural parameterization of
the heteroscedastic NLL improves training stability.

9.5.3 CRISPR Datasets for Gene Knockdown E�cacy

As [Sti+23] highlight, heteroscedasticity is an often encountered problem in natural sciences.
To test heteroscedastic regression approaches in such a setting, they introduce a set of
datasets to model the e�cacy of the CRISPR-Cas13 system for gene knockdown. In
particular, Cas13 is a system that targets specific RNA transcripts to temporarily decrease
gene expression. Decreasing gene expression levels serves multiple purposes in molecular
biology, including the understanding of the function of specific genes and for therapeutic
aims. The authors propose three datasets, and for each dataset, multiple e�cacy scores
are reported, resulting from replicated experiments. The response variable is a scalar value
measuring knockdown e�cacy from a one-hot encoded target sequence. We report results
on the de-noised averaged data across replicates (see [Sti+23]) on 10 independent runs. We
use the same networks as on UCI but with ReLU activation and using kfac instead of a full
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Epistemic Uncertainty in Heteroscedastic Regression

Problem: predict gene knockdown efficacy of guides in CRISPR system2
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particular, Cas13 is a system that targets specific RNA transcripts to temporarily decrease
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biology, including the understanding of the function of specific genes and for therapeutic
aims. The authors propose three datasets, and for each dataset, multiple e�cacy scores
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on the de-noised averaged data across replicates (see [Sti+23]) on 10 independent runs. We
use the same networks as on UCI but with ReLU activation and using kfac instead of a full
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1Seitzer, Tavakoli, Antic, Martius. On the Pitfalls of Heteroscedastic Uncertainty Estimation with Probabilistic Neural Networks. ICLR 2022.
2Stirn, Wessels, …, Knowles. Faithful Heteroscedastic Regression with Neural Networks. AISTATS 2023.

→ Improvements due to both natural parameterization and Laplace
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